

D.3.2 METHODOLOGY FOR EVOLUTIONARY
REQUIREMENTS

Gábor Bergmann (BME), Elisa Chiarani (UNITN), Edith Felix (THA),
Stefanie Francois(OU), Benjamin Fontan (THA), Charles Haley
(OU), Fabio Massacci (UNITN), Zoltán Micskei (BME), John
Mylopolous (UNITN), Bashar Nuseibeh (OU), Federica Paci
(UNITN), Thein Tun (OU) Yijun Yu (OU), Dániel Varró (BME)

Document information

Document Number D.3.2

Document Title Methodology for Evolutionary Requirements

Version 3.18

Status Y2 Draft

Work Package WP 3

Deliverable Type Report

Contractual Date of Delivery 31 January 2010

Actual Date of Delivery 31 January 2011

Responsible Unit OU

Contributors OU, UNITN, BME, THA

Keyword List Requirements, Elicitation, Argumentation, Evolution

Dissemination level PU

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 2/137

Document change record

Version Date Status Author (Unit) Description

1.1
21 September

2009
Draft

Federica Paci

(UNITN)

Outline of the

deliverable

1.2
6 October

2009
Draft

Zoltan Micskei

(BME)

Added subtopics for

chapter 4

1.3
4 November

2009
Draft

Federica Paci

(UNITN)

First draft of section 3

added

1.4
5 November

2009
Draft Yijun Yu (OU)

Section 1, 5-7 based on

the submitted ESSOS

paper, section 2 is

newly written

1.5
6 November

2009
Draft

Gábor

Bergmann

(BME)

First draft of Section 4

1.6
9 November

2009
Draft

Benjamin

Fontan (THA)

Add subtopic in section

3 (about DOORS and

DSML)

Add subtopic in section

5 (Manage Change in

DOORS and DSML)

1.7 10 November Draft
Federica Paci

(UNITN)
Add Input for Section 5

1.8
12 November

2009
Draft

Gábor

Bergmann

(BME)

Elaborated Section 4

1.9
13 November

2009
Draft Yijun Yu (OU)

Edited the three

conceptual models in

Section 3 and 5. Added

the mapping of

concepts in the Thales

conceptual models in

Section 3 to the general

one proposed.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 3/137

Fixed the references.

Note the new

conceptual models are

also uploaded as the

source file for UMLet.

1.10
13 November

2009
Draft

Charles Haley

(OU)

Checked with the

conceptual models

about Security Goals

and Argumentations.

Also edited the

definitions.

1.11
26 November

2009
Draft

Gábor

Bergmann

(BME)

Revised evolution rules

Conceptual model,

added initial example

1.12
7 December

2009
Draft

Yijun Yu (OU)

Charles Haley

(OU)

Bashar

Nuseibeh

(OU)

Revised the

methodology, refined

the conceptual models

to highlight the

contributions. Drafted

the change

management

conceptual model to be

consistent with the

discussion notes.

1.13
8 December

2009
Draft

Yijun Yu (OU)

Thein Tun

(OU)

Revised the conceptual

models, and checked

and edited the

executive summary,

sections 2 and 3.

1.14
9 December

2009
Draft

Gábor

Bergmann

(BME)

Minor revisions in text

and Figures 8-9.

1.15
16 December

2009
Draft

Benjamin

Fontan (THA)

Add subsection 3.1.3

(Security goal Analysis

in Thales Context)

Add subsection 3.2.2

(Application of

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 4/137

conceptual model 3.2 in

Thales Requirement

Workbench)

Add subsection 3.3.2

(application of

conceptual model 3.3 in

DOORS T-REK)

Rearrange and simplify

section 5

Add definitions in

section 9

1.18
18 December

2009
Draft

Federica Paci,

Fabio

Massacci

(UNITN)

New conceptual model

for requirements added

to Section 3

Structure of section 3

changed.

Example added

1.19
21 December

2009
Draft

Charles Haley,

Yijun Yu (OU)

Update the text about

the changed

requirements meta

model

1.22
25 December

2009
Draft

Federica Paci

(UNITN)

Example with figures

updated

8 January

2010
Review

Ruth Breu

(Innsbruck)

Review of the version

1.22 draft received

1.23
12 January

2010
Draft

Elisa Chiarani

(UNITN

First Quality Check

completed based on

version 1.22. Minor

remarks added

1.24
13 January

2010
Draft

Federica Paci

(UNITN)

Received the reviewing

comments from Ruth

Breu. Addressed some

of the comments on

example and Thales

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 5/137

section

1.25
13 January

2010
Draft

Benjamin

Fontan (THA)
Update section 7

1.26
14 January

2010
Draft

Gábor

Bergmann

(BME)

Added evolution rule

example with model

manipulation

1.27
15 January

2010
Draft

Thein Tun,

Yijun Yu (OU)

Addressed Ruth’s

comments concerning

Sections 1, 2, 3 and 6.

1.28
20 January

2010
Draft

Federica Paci,

(UNITN)

Modified Example

Added

1.29
20 January

2010
Draft

Gábor

Bergmann

(BME)

Remade evolution rule

example to fit the new

concept; also expanded

Section 5 to link the

two examples

1.30
25 January

2010
Draft

Thein Tun

(OU), Yijun Yu

(OU)

Fixing the remaining

issues of the first

quality check

1.31
26 January

2010
Draft

Gábor

Bergmann

(BME)

Adjusting evolution

rules chapter after the

reordering.

1.32
26 January

2010
Draft

Elisa Chiarani

(UNITN)
Final Quality Check

1.33
27 January

2010
Final

Federica Paci

(UNITN)

Final Version with last

comments about

quality check

addressed

2.0 25th May 2010 Revision
Thein Tun

(OU)

Revised the structure

of the document, based

on the discussions at

GA in Trento, and

subsequent

conversations. Added

the methodology

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 6/137

section (Section 2).

2.1 26th May 2010 Revision

Gábor

Bergmann

(BME)

Began the restructuring

of the Evolution Rules

section

2.2
27th May

2010
Revision

Gábor

Bergmann

(BME)

Moved material into

the new Example

section, fixed

references

2.3
27th May

2010
Revision

Gábor

Bergmann

(BME)

Explained goals of

evolution rules.

Added formalization

with CPs

2.4
31th May

2010
Revision

Federica Paci

(UNITN)

Added section 3 on

SeCMER conceptual

model and Section 4 on

the evolution

conceptual model

2.5 1th June 2010 Revision
Federica Paci

(UNITN)

Revised the structure

of the document

2.6 3th June 2010 Revision
Federica Paci

(UNITN)
Revised the example

2.7 8th June 2010 Revision
Thein Tun

(OU)

Revised Figure 1.

Accommodated Thales

comments/suggestions.

Linked sections 2 and

3. Revised security

requirement into

security goal. Revised

the argumentation

example per revision

2.6.

2.8 9th June 2010 Revision
Federica Paci

(UNITN)

Revised Section 6 by

introducing the three

perspectives of change

and modified text

describing the example.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 7/137

2.9
10th June

2010
Revision

Gábor

Bergmann

(BME)

Compacted Section 7.1,

added new Section 8.5

2.10
11th June

2010
Revision

Thein Tun

(OU)

Checked and added

figure numbers.

2.11
14th June

2010
Revision Yijun Yu (OU)

Addressed formatting

issues and the

remaining comments in

revision 2.9

2.12
15th June

2010
Revision

Federica

Paci(UNITN)

Comments on the

organization of the

deliverable and English

mistakes and bad

wording

2.13
15th June

2010
Revision

Federica

Paci(UNITN)

Merge the ontology

metamodel with the

argument metamodel

2.14
15th June

2010
Revision Yijun Yu (OU)

Rewrite the summary,

adjust the overview

figure of the

methodology and fix all

the figure numbers in

Appendix 1.

2.15
16th June

2010
Revision

Gábor

Bergmann

(BME)

Improved Section 8

according to advice by

OU and UNITN

Minor change in Sec. 3

2.16
16th June

2010
Revision Yijun Yu (OU) Merging 2.14 and 2.15

2.17
16th June

2010
Revision

Federica Paci

(UNITN)

English corrections and

typos in Executive

Summary, Introduction,

Section 6 and 8, Modify

the appendix

2.18 16th June Revision Yijun Yu (OU) Minor changes to

control the section and

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 8/137

2010 figure numbers

2.19
16th June

2010
Revision

Bergmann

Gábor (BME)

Move part of Evolution

rule example to Section

7

2.20
17th June

2010
Revision

Bashar

Nuseibeh

(OU)

Review and copy edit,

including quality check

changes by Elisa

Chiarani

2.21
17th June

2010
Revision Yijun Yu(OU) Review and copy edit

2.22
17th June

2010
Revision

Federica Paci

(UNITN)

Removal of two

comments, Correction

of the title of section

7.5

3.0 29th Sep 2010 Y2 Draft
Thein Tun

(OU)

Initial formalization of

argumentation in

section 5. Minor

changes in sections 3

and 4.

3.1 05 Oct 2010 Y2 Draft
Thein Tun

(OU)

Defining link with WP2

in section 3.1. Possible

tool support for

informal

argumentation in

OpenPF (section 5).

3.2 20 Oct 2010 Y2 Draft
Thein Tun

(OU)

Revised Section 5, and

added argumentation

meta-model, example

using the tool support

for informal

argumentation, Event

Calculus and

formalization of

argument, and

overview of formal

reasoning in OpenPF.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 9/137

3.3 27 Oct 2010 Y2 Draft

Gábor

Bergmann

(BME)

Addressed some of the

reviewer concerns:

added discussion of

time complexity and

missing citations. Also

updated the formal

definitions to be more

easily comprehensible.

3.4 31 Oct 2010 Y2 Draft

Gábor

Bergmann

(BME)

Added subsection to

explain “big picture” i.e.

role of Evolution Rules

in a process

3.5 1 Oct 2010 Y2 Draft
Thein Tun

(OU)

Simplified the

conceptual model

according Paris

discussions. Revised

the argumentation

syntax and example.

3.6
22 November

2010
Y2 Draft

Federica Paci,

John

Mylopolous

(UNITN)

Cleaned section about

conceptual model and

added section about

integration with risk

assessment.

3.9
27 November

2010
Y2 Draft

Gábor

Bergmann

(BME)

Added generic change

model to Section 6.

Fixed numbering in

Appendix.

3.10
1 December

2010
Y2 Draft

Thein Tun

(OU)

Added integration with

WP2, and revised the

argumentation

example.

3.11
05 December

2010
Y2 Draft

Gábor

Bergmann

(BME)

Incorporated Tun’s

changes from the other

file. Improved wording

in Section 6, moved the

Thales part into the

Appendix.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 10/137

3.12
10 December

2010
Y2 Draft

Thein Tun

(OU)

Overall editing and

polishing.

3.13
5 January

2011
Y2 Draft

Thein Tun

(OU)

Overall editing and

polishing. Addressing

internal reviewers

comments

3.14
7 January

2011
Y2 Draft Yijun Yu (OU)

Section 2/3 update the

description of

argumentation analysis

3.15
13 January

2011
Y2 Draft

Thein Tun

(OU)

Overall editing and

polishing. Extended

Executive Summary.

3.16
14 January

2011
Y2 Draft

Karmel

Bekoutou

(UNITN)

quality check

completed-minor

remarks

3.17
26 January

2011
Y2 Draft

Thein Tun

(OU)

Addressed quality

check remarks and

update some figures.

3.17
28 January

2011
Final

Federica Paci

(UNITN)

Minor Corrections to

Section 5 and 6

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 11/137

Executive summary

Long lived software systems evolve as their environment changes. When a change
happens, security concerns need to be analyzed to re-evaluate the impact of the
change on the system and on the assumptions about environmental properties.
Typically, change requests are handled in an ad-hoc way: requirements are described
informally in natural language, which is prone to ambiguity and uncertain traceability to
the evolving design. There is no explicit means to analyze changes with respect to the
security goals underlying the evolution of the system design.

To address these problems in a repeatable and systematic way, we have
developed and adopted an iterative security methodology for evolving requirements
(SeCMER). Every iteration of the SeCMER process starts with an elicitation stage that
analyzes every change request or risk assessment into incremental changes of
requirements models. These models are represented using consistent, state of the art
modeling languages, such as Tropos and Problem Frames. Through a unified
extension of existing Security Goals frameworks (e.g., Secure Tropos and Abuse
Frames) it is then possible to represent specifications in such a way so as to reveal
vulnerabilities through a systematic argumentation analysis, based on the facts and
rules about domain properties. Using the propositions in the requirements model, the
argumentation process analyzes whether the design has exploitable vulnerabilities that
might expose valuable assets to malicious attacks. Facts and domain rules that help
identify a rebuttal to the security goals are mitigated by introducing induced changes of
security properties from the SeCMER conceptual model. In addition to the structured
approach to handling change, the SeCMER approach incorporates incremental
transformation of requirement models based on evolution rules. Every evolution rule
can be specified formally by events, conditions and actions (ECA). Whenever a change
to the requirement model matching some evolution rule(s) is detected, the
transformation engine applies specified actions on the requirement model and check
whether the existing security goals are still satisfied after the change. If not, the change
the passed onto the argumentation process, in order to consider whether the security
goal can be restored. When even that is not possible, the security goal will be passed
back to the elicitation process where the goal will have to be renegotiated and
reformulated. We illustrate the SeCMER methodology and its iterative process through
a concrete example of evolution taken from the ATM domain. The example includes:
the SeCMER models before and after changes of introducing the Arrival Manager tool
and the SWIM communication system; the argumentation analysis for the security goal
of protecting SWIM information from unauthorized access; and the example of
evolution rules to generalize automatable monitoring and adaptation to the triggering
and reactive changes to the SeCMER models.

The SeCMER methodology is not stand-alone: it is integrated at the conceptual
level, process level and the tool level with other methods and techniques developed by
the SecureChange project. This report discusses how the SeCMER methodology
integrates with other SecureChange approaches dealing with the process, architecture
and risk. The integration with design and testing are described in respective work
packages. At the end of the report, we present the state of practice in processing
security requirements, which will be improved by adopting the SeCMER.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 12/137

Position of the deliverable in the project timeline

The main artifacts of WP3 are the SeCMER conceptual model, the SeCMER
methodology for changing requirements, and a CASE tool prototype that supports the
different steps of SeCMER methodology. Considering the SecureChange project
timeline depicted in the following figure, the SecMER conceptual model and the
SeCMER methodology have been conceived during the M0-M24 timeframe, while the
CASE tool is going to be developed during the M24-M36 timeframe. The SeCMER
methodology presented in this report belongs to the timeframe M0-M24.

Validation

The WP3 artifacts are SeCMER conceptual model, the SeCMER methodology for
changing requirements, and a CASE tool prototype. Each of these artifacts is subject to
the validation activities in SecureChange.

The validation activities have not started yet and will be carried out during the third year
of the project by organizing a dedicated workshop with ATM experts. For the purpose
of the validation, we will use the process level change and the organizational level
change and the security properties information protection and information access. WP3
uses also the POPS case study, but to a lesser extent to illustrate the integration with
testing. The change requirement that is addressed is specification evolution, and the
security property is life-cycle consistency.

Integration

The strategic position of WP3 in terms of case studies and integration with technical
artifacts of the other work packages is shown in the figure below. The ATM case study
serves as the example for demonstrating the integration with artifacts of WP2, WP4,
and WP5. The POPs case study is used for exemplifying the integration with artifacts
of WP7.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 13/137

WP3-WP2. The integration link between WP3 and WP2 is described in this report and
in D2.2. The integration is both at artefacts and at process level. The SeCMER
conceptual model of the evolving requirements is a specialisation of the Requirement
Model package of the Integrated Meta Model presented in D2.2, while the SeCMER
methodology steps are an instantiation of the Overall Process. The integration is
demonstrated based on the ATM case study, addressing the organization level change
and the security properties of information protection.

WP3-WP4. The integration link between WP3 and WP4 is reported described in this
report and in D4.2. The integration shows how UMLseCh can be used to help with
verifying that requirements are actually met by a system and that they are complete
with respect to high-level security objectives. The integration is demonstrated with the
ATM case study, addressing the organization level change and the security properties
of information protection and information provision.

WP3-WP5. The integration link between WP3 and WP5 is described in this report. The
integration is both at conceptual level and at process level. At the conceptual level, an
integration of concepts is presented and it is explained how requirement model artifacts
should be mapped to risk model artifacts and vice versa. The process level integration
leverages on the conceptual level integration for the integration of the requirements
elicitation and risk assessment methodologies. The integration is demonstrated in the
ATM case study, addressing the organization level change and the security properties
of information protection and information provision.

WP3-WP7. The integration link between WP3 and WP7 is described in this report. The
integration is both at conceptual level and at process level. At the conceptual level, an
integration of concepts is presented and it is explained how requirements artifacts
should be mapped to test artifacts and vice versa. At the process level, the integration
of requirements methodology and testing methodology is described.The integration is
demonstrated based on the specification evolution change requirement of the POPS
case study.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 14/137

TABLE OF CONTENTS

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 11

CONTENTS 14

1 INTRODUCTION 21

1.1 Challenges of Evolution 21

1.2 A Framework for Requirements Evolution 22
1.2.1 Relationships between evolving artefacts 22
1.2.2 Security-related notions 24

1.3 Overview of SeCMER 25

1.4 The ATM Example 26

1.5 Structure of the report 27

2 REQUIREMENTS ELICITATION 28

2.1 The SeCMER conceptual model 29

2.2 The SeCMER requirements elicitation process 31

2.3 The ATM Example 32

3 ARGUMENTATION ANALYSIS 34

3.1 Overview 34

3.2 Meta-model of arguments 35

3.3 Visualizing SeCMER Argumentation 36

3.4 Formally Checking Links between Arguments 37

3.5 Arguments and the conceptual model 40

3.6 Formalization of arguments using the Event Calculus 40

3.7 Arguments and the model transformation 43

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 15/137

3.8 Tool-support for formal argumentation 43
3.8.1 ATM Example 44

4 PROCESS AUTOMATION BY EVOLUTION RULES 50

4.1 Goals for the evolution rules 51

4.2 Application of evolution rules in SeCMER 52

4.3 Underlying model transformation technology 53

4.4 Conceptual model for evolution rules 54

4.5 Mathematical foundations 56
4.5.1 Graph Patterns 56
4.5.2 Graph Change Patterns 58
4.5.3 On computational complexity 59
4.5.4 Rule Formalism 60

4.6 Examples of evolution rules 60
4.6.1 Graph pattern for expressing the problem 61
4.6.2 Solution 1: one rule per elementary change 61
4.6.3 Solution 2: single coarse-grained rule 63
4.6.4 Solution 3: automatic problem correction 63
4.6.5 Discussion 64

5 APPLICATION OF THE METHODOLOGY 66

5.1 Requirement Elicitation 66

5.2 Requirement Evolution 68

5.3 Argumentation for security properties 69

5.4 Deriving and using Evolution Rules 70

5.5 Interaction of argumentation and evolution rules 71

6 INTEGRATION WITH OTHER APPROACHES IN SECURECHANGE 7 4

6.1 Integration of Requirements Engineering with the Ov erall Process and
Architecture 74

6.1.1 Artefact Integration 74
6.1.2 Process Integration 76

6.2 Integration of Requirements Engineering and Risk As sessment 79
6.2.1 Conceptual Integration 80
6.2.2 Integrated Process 83
6.2.3 Application to ATM Case Study 89

6.3 Integration of Requirements Engineering with Design 96

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 16/137

6.4 Integration of Requirements Engineering and Testing 97

6.5 Conceptual Integration 97
6.5.1 Requirement Concepts 98
6.5.2 Integration 99

6.6 Integrated Process for Change Management 100
6.6.1 Overview of Process 100

6.7 Application to POPS Case Study 103
6.7.1 Change Requirement 103
6.7.2 Requirement and Test Modeling for GP 2.1.1 104
6.7.3 Requirement and Test Modeling after Change 108

7 EVOLUTION OF SECURITY MODELS 112

7.1 Generic Model of Change Concepts 112
7.1.1 Integrated Model 113
7.1.2 Change 113
7.1.3 Change Line and Change Step 114
7.1.4 Change Event 114
7.1.5 Illustrative Example 115

7.2 Definition of Change Control 116
7.2.1 Change Handler 117
7.2.2 Change Sensor 117
7.2.3 Change Actuator 118

7.3 Correspondence of Change Model Concepts 118

8 CONCLUSIONS 120

9 ACKNOWLEDGEMENT 121

REFERENCES 122

GLOSSARY 125

A. APPENDIX: STATE OF THE PRACTICE 126
A.1. The security risk analysis method: Principles 126
A.2. DOORS T-REK 127
A.3. Application in Thales Requirement Workbench 129
A.4. The Thales Change Model 134
A.5. ChangeLine Conceptual model 134
A.6. ChangeRequest Conceptual model 135
A.7. Behavior of Change Request 136

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 17/137

LIST OF FIGURES

Figure 1 An Overview of SeCMER 25

Figure 2 An Overview of SeCMER (Requirements Elicitation) 28

Figure 3 Security Requirements Conceptual Model 29

Figure 4 Conceptual Model Representation in EBNF of xtext 31

Figure 5 A SeCMER requirement model capturing the relevant domains before the change 32

Figure 6 A SeCMER requirement model after the change 33

Figure 7 An Overview of SeCMER (Argument Analysis) 34

Figure 8 Meta-Model of the Argumentation 35

Figure 9 Basic Visual Syntax of SeCMER Arguments 36

Figure 10 Visual Syntax of Links between Arguments 37

Figure 11 The formal argumentation for the ATM security with grammar extension 38

Figure 12 An overview of OpenPF support for argumentation 44

Figure 13 Argument for Security of AMAN before change 45

Figure 14 Argument for Security of AMAN before change 45

Figure 15 Argument for Security of AMAN after the mitigations 46

Figure 16 A SeCMER requirement model for a relevant Security Property with respect to
Changes 46

Figure 17 Textual input to create the diagram in Figure 5 47

Figure 18 The Event Calculus template generated by the OpenPF tool 48

Figure 19 Results of the abductive reasoning on the change 49

Figure 20 An Overview of SeCMER (Requirements Evolution) 50

Figure 21 Conceptual model for evolution rules 55

Figure 22 The undesired pattern: untrusted delegation 61

Figure 23 The “before” requirements model 67

Figure 24 The “after” requirements model 68

Figure 25 Integrated Meta Model 75

Figure 26 Security Requirements Conceptual Model (in relation to Integrated Meta Model) 76

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 18/137

Figure 27 Sample Change Story 77

Figure 28 Overview of SeCMER methodology 78

Figure 29 State Diagram of Requirements Model 79

Figure 30 Basic requirements concepts 81

Figure 31 Basic risk concepts 81

Figure 32 Overview of integrated process 85

Figure 33 Simple change story 88

Figure 34 Integrated process in the global setting 89

Figure 35 Requirement Model before the introduction of the AMAN 91

Figure 36 Risk Model before the introduction of the AMAN 92

Figure 37 Requirement Model after the introduction of the AMAN 92

Figure 38 Risk Model after the introduction of the AMAN 93

Figure 39 Treatment options after the introduction of the AMAN 94

Figure 40 Treatment options after the introduction of the AMAN 94

Figure 41 Requirement model updated with treatment actions 95

Figure 42 Basic requirements concepts 98

Figure 43 Simple change story 102

Figure 44 Card Life Cycle in GP 2.1.1 and GP 2.2 103

Figure 45 Requirement Model for GP 2.1.1 104

Figure 46 Test Model for GP 2.1.1 105

Figure 47 OCL code for transition from CARD_LOCKED to TERMINATED 106

Figure 48 OCL code for setStatus APDU command 107

Figure 49 OCL for setStatus APDU command 108

Figure 50 Requirement Model for GP 2.2 109

Figure 51 Test Model for GP 2.2 110

Figure 52 OCL code for setStatus APDU command 110

Figure 53 OCL code for setStatus APDU command 111

Figure 54 Change Concepts 112

Figure 55 State Machine of Roles of an Integrated Model 113

Figure 56 Example evolution, phase one (exploring alternatives) 115

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 19/137

Figure 57 Example evolution, phase two (reduced to stable candidates) 116

Figure 58 Change Line, phase three (after decision) 116

Figure 59 Definition of Change Control Facilities 117

Figure 60 Correspondence of Change Concepts 119

Figure 61 The security analysis method in Thales context – big picture 126

Figure 62 DOORS project structure 128

Figure 63 Simplified Datamodel in T-REK 129

Figure 64 Conceptual model of Security Objectives and Requirements in Security DSML 130

Figure 65 Security DSML Static Model description 131

Figure 66 Mapping between DSML and DOORS 131

Figure 67 Extended Conceptual model including DOORS connections 132

Figure 68 Close view on the Security Objectives 132

Figure 69 Derived Requirements expressed in DOORS 133

Figure 70 Properties of the Database Server in DSML 133

Figure 71 Database Server description in DOORS 133

Figure 72 DSML Change Model conceptual model 135

Figure 73 DSML Change Request Conceptual model 136

Figure 74 Change Request Status Behavior (a) generic (b) requirements-specific 137

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 20/137

LIST OF TABLES

Table 1 Elementary Predicates of the Event Calculus 40

Table 2 Domain independent rules of EC 41

Table 3 Conceptual integration of requirement and risk modeling 83

Table 4 Conceptual Integration 99

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 21/137

1 Introduction

Long-lived software systems often undergo evolution over an extended period of time.
Evolution of these systems is inevitable, as they need to continue to satisfy changing
business needs, new regulations/standards and the introduction of novel technologies.
Such evolution may involve changes that add, remove, or modify system behavior; or
that migrate the system from one operating platform to another. These changes may
result in requirements that were satisfied in a previous release of a system not being
satisfied in its updated version.

1.1 Challenges of Evolution
When evolutionary changes violate security goals, a system may be left vulnerable to
attacks [22]. Dealing with changes to security goals poses several challenges,
including:

• Ad hoc elicitation of security goals . Most security goals are implicit or are
added after security violations have happened, which makes it difficult to
prevent security problems and address vulnerabilities in a proactive way. The
SecureChange Methodology for Evolutionary Requirements (SeCMER)
described in this report provides a conceptual model and a process for making
the elicitation of security goals systematic.

• Imprecise modeling of requirements . Security requirements, in order to
support automation support, demand a formal description that can be used to
analyze, argue and evaluate. Vaguely expressed informal natural language
descriptions are difficult for automatic functions to give an assessment of the
problem and to provide useful mitigation advices. SeCMER provides a light-
weighted approach to formalizing and reasoning about changing security goals.

• Limited analysis of the impact of change . Even when changes have
happened systematically, there are no mechanisms to argue formally about
these changes with respect to the domain knowledge of the system. Will the
system collapse due to a subtle change of a trust assumption, for example
about the system boundary? Can the system respond to the introduction of a
new fact or domain knowledge that often invalidate the existing justification of
security? SeCMER offers an approach based on argumentation and model
transformation to reason about the impact of change.

• Lack of an integrated approach . Change management of security
requirements is often not integrated with risk modeling tools. Addressing this
limitation requires an explicit mapping between the changes of security
requirements and the system vulnerability in order to assess their impact on the
system-to-be. When requirements tools such as DOORS and risk analysis
methodologies and tools are not integrated, mitigation is often a late response
to continuous evolution of software systems. Integration of our methodology
with other work packages such as WP5 (Risk Assessment) addresses this
issue.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 22/137

The above difficulties are intertwined in the process of requirements engineering for
secure software systems. When addressing these challenges, we propose to start with
a well-known engineering principle that is simple enough to deal with different
requirement modeling approaches, while at the same time it allows for the high-level
analysis of the changes.

1.2 A Framework for Requirements Evolution
According to Zave and Jackson [27], requirements engineering involves the
understanding of the given, or indicative, domain properties in the physical world W
and the specifications of the machine S, in relation to requirements R, which described
the required, or optative, properties. These relationships between properties establish
a structure in order to facilitate the problem analysis. They are captured by the
entailment: W, S ├ R. Based on the work of Zave and Jackson [27], Gunter et al [13]
propose a reference model for requirements engineering. This report extends the work
of Gunter et al [13] in two ways: first, it show describes the relationships between
evolving artefacts, and second, it introduces the security-related notions into the
framework.

1.2.1 Relationships between evolving artefacts

This section gives a description of the requirements evolution through relationships
between evolving artefacts. These relationships highlight several properties, including
the assurance that the modified system can maintain all the existing security goals
while new security properties need to be introduced to accommodate changes1.

Gunter et al [13] identifies five artefacts in system development -- domain knowledge
(W), requirements (R), specifications (S), programs (P) and the programming platform
or computer (C) -- and describes their general relationships using the logical entailment
operator (├) as follows.

W, S ├ R

C, P ├ S

The first entailment (W, S ├ R) differentiates between specifications S and
requirements R by suggesting that the specifications, within a particular physical
(world) context W, imply R. In other words, specifications rely on explicit domain
properties in satisfying the requirements. In practice, stakeholders give descriptions of
R and S. A problem, in this view of requirements engineering, is the challenge of
obtaining a correct specification from the stakeholders.

Similarly, the second entailment (C, P ├ S) differentiates between programs P and
specifications S by suggesting that programs, on a particular computing platform C,
imply specifications. Programs, therefore, rely on properties of the programming
platform in satisfying the specifications.

We view the strength of the logical entailment operator in these formulae to be non-
prescriptive: it means that the artefacts (W, R, S, P and C) may be described in varying

1 This subsection is based on our paper [25].

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 23/137

degrees of formality, from statecharts, temporal logic, etc. to natural language.
Likewise, showing that an entailment relationship holds for some given artefacts also
may be done to different degrees of formality, from mathematical proofs to informal
arguments, depending on the description language chosen and the specific needs of
the stakeholders. When formal description languages are used, the proof can be done
through logical deduction.

In this sense, the two entailments provide a general framework for establishing and
maintaining traceability links from requirements to program code, by factoring out
properties of the world and the programming platform. Additionally, the entailments
help define responsibilities of various stakeholders. In broad terms, the first entailment
is the responsibility of requirements engineers, and the second entailment is that of
developers.

Finally, problem structures of software to be developed from scratch have different
characteristics from those of software to be developed incrementally by modifying and
extending an existing system. In the latter case, appropriate representation of the
existing program as a partial solution to the future problem poses an important issue.

In a typical evolutionary development project, there is an existing solution that satisfies
current requirements. In particular, there is a problem Rnow in the present state of the
world Wnow, and a specification of the current machine, Snow, to solve the problem such
that:

Wnow , Snow ├ Rnow (1)

The current program Pnow, implemented on a particular computer, Cnow, satisfies the
specification Snow:

Cnow , Pnow ├ Snow (2)

Customers of this system want a new system in future, so that:

Wfuture , Sfuture ├ Rfuture (3)

and the new system continues to satisfy requirements for the existing system:

Wfuture , Sfuture ├ Rnow (4)

This entailment (4) captures an important property of systems in evolutionary
development because its invalidation can tell us whether an existing security goal has
been denied by the proposed system.

Customers need a new program, either on the same or a different computer -- we
restrict ourselves to the former in this work -- which satisfies the future requirements as
specified in Sfuture:

Cnow , Pfuture ├ Sfuture (5)

Importantly, developers do not wish to develop the system from scratch -- that is to
say, refine Rfuture to Pfuture. Rather, they wish to reuse Pnow.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 24/137

A key question evolutionary development needs to address is that of representing the
existing solution. If we take a rather formal view of the development, we may use the
following process. First, obtain the new requirements Rnew, so that Rnow, Rnew ├ Rfuture.
Since Pnow is already implemented on Cnow, describing Pnow running on Cnow as some
given properties of Wfuture means (i) Pnow is reused as it is (ii) Snew (or specification for
Rnew) has to acknowledge the existence of Snow and takes into account potential
concerns that may arise from when implementation of Snew is composed with Pnow.

For example, there could be shared variables between Snow and Snew, and
implementation of Snew must not invalidate assumptions Snow has on those shared
variables. Taking such concerns into account, refining Snew to Pnew will lead to a
program that will compose with Pnow, producing the required Pfuture.

This view assumes (i) developers do not modify Pnow and (ii) Pnew may be delivered in a
single increment. Architecture of certain software such as product-line applications may
allow these assumptions, but for other systems, these assumptions are not practical.
The alternative approach suggested here recognizes that in evolutionary development
projects, Pnow is usually modified and Pnew is rarely built in one increment.

Allowing Pnow to change offers potential benefits. For instance, if the developers know
that a complex problem can be solved using the Model-View-Controller (MVC) pattern,
the problem maybe decomposed in such a way that the sub-problems map to
components of MVC.

It should be recognized that Pnow may be a piece of software that has evolved over
time, and its current structure may not facilitate eventual composition with Pnew.
Therefore, structural changes to Pnow to improve its modularity often simplify
composition. As well as the benefits, there are potential risks: it is often difficult to
understand the full impact of a particular change.

In the next section, we present in more detail the different entities and relationships to
represent the security goals and requirements and the propositions to reason in the
argumentation process.

1.2.2 Security-related notions

The challenges of addressing evolving security goals arise from multiple facets of
engineering problems. Existing methodologies deal with the changes in security goals
with different focuses. For example, Secure Tropos have been used to model both
functional and non-functional requirements of stakeholders as security goals [20]. By
modeling the delegation and trust relationship among these stakeholders, security
problems of a social-technical system are elicited and reasoned about at a high level.
On the other hand, Problem Frames [15] approaches for security (e.g., abuse frames
[18, 19]) focus primarily on modeling the relationship between the attacker behavior
and system properties. Although individually these approaches are powerful in
modeling and analysis of different perspectives of the security problems, it is not clear
how the synergy between them can be exploited.

We extend the framework of Gunter et al [13] to address security concerns by
considering the security-related concepts such as assets, threats, vulnerabilities,

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 25/137

attackers, trust assumptions, risks and satisfaction argumentation [12], as well as risk-
related concepts such as threats, assets and damages.

1.3 Overview of SeCMER
Based on the framework presented in the previous section, this report proposes the
SecureChange Methodology for Evolutionary Requirements (SeCMER).

In Figure 1, the diagram summarizes the proposed SeCMER process for handling
evolutionary requirements in secure software systems.

Figure 1 An Overview of SeCMER

The inputs to the process in the SeCMER methodology are:

• Change Request : Informal requests for change made by users and customers of
the secure software system. These requests are typically managed using tools
such as Issue Tracking systems.

• Risk Assessment : Risks analysis can produce risk treatments that are candidates
for requirements and change.

• Existing System Designs : Artifacts describing the main components of the
systems—software, hardware, and people—their configuration, behavior and
properties. They may be documented using natural language text, UML diagrams,
or formal descriptions.

• Requirement & Change : Statements of properties, including security goals, the
existing system satisfies, together with the changes that need to be made to the
existing requirements model. When changes are implemented, it is necessary to

Change

Request
Requirements

Elicitation

System

Design

Requirements

& Change

Argument

Analysis

Requirements

Evolution

Evolution

Rules

Δ Security

Properties

Risk

Assessment

secure

after

change?

requirement

satisfiable?

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 26/137

check whether properties of the existing design are satisfied by the new design,
and if not, formulate properties that need to be satisfied by the new design.

Focusing on security, the main output from the methodology is therefore either an
assurance that the changes did not make the system violate the existing properties, or
a formulation of new properties for the new design, namely the Security Properties to
be implemented by the new design. Event-Condition-Action evolution rules discovered
during the argumentation process can be used to monitor certain changes that can be
handled automatically.

The proposed methodology for handling change has three main steps:

1. Requirements Elicitation : When a change is proposed through a change
request or risk assessment, the existing design is examined to (a) identify the
context of the proposed change, (b) check whether the proposed change is
necessary. In terms of the framework described previously, this stage
establishes Wfuture and Rfuture. A conceptual model of static requirements (see
Section 2 for guidelines) supports this step.

2. Argument Analysis : This stage checks whether there are new security
properties to be added or to be removed (∆ Security Properties) as a result of
changes in the requirement model. Furthermore, a high-level and long-term
feedback is possible, in order to adapt/update evolution rules in a way that more
human effort can be saved by automation in the future. This stage derives the ∆
Security Properties (∆sp) so that ∆sp U Snow ├ Sfuture. This stage is supported by
the conceptual model of argumentations presented in Section 3. This stage may
be carried out either before or after the evolution stage.

3. Requirements Evolution : This stage monitors any changes made to the
requirement model, and when changes that match the patterns of evolution are
detected, predefined transformation is applied to the requirements model. The
transformation will automatically establish whether the existing security
properties have been broken by the change or not. This stage checks the
entailment (4) in the previous section, namely that Wfuture, Sfuture ├ Rnow. A
conceptual model of evolution (Section 7), and automated transformation
(Section 4) support this step.

In practice, there are likely to be several change requests at a time, and these requests
have to be stored, prioritized, scheduled, resourced, implemented and tested.
However, these issues are outside the scope of SeCMER.

1.4 The ATM Example
Since this report focuses the on process level change requirement and the information
access and information protection properties, the scenario fragment we are going to
consider is transmission of FDD (Flight Data Domain) data to the AMAN (Arrival
Management system) via the new communication network. We want to focus on how to
enforce access control policies on FDD transmission and how to ensure
confidentiality of FDD. In terms of security means, we are going to apply the SeCMER
methodology for requirement change management to the ATM case study. We will
produce SeCMER models before and after changes of introducing the Arrival Manager

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 27/137

tool and the communication network and the argumentation analysis for the security
goal of protecting FDD from malicious attack.

1.5 Structure of the report
The structure of the remainder of the report follows an iteration of the SeCMER
methodology, which includes three main steps: Requirements Elicitation, Requirements
Evolution, and Argumentation Analysis. Section 2 presents the detailed conceptual
model and the process used in SeCMER. Section 3 explains the argumentation
framework for analyzing the security goals and their changes. Sections 7 defines the
change model, and Section 4 discusses how the process of change can be automated
using the incremental model transformation technique. Application of SeCMER to the
ATM example is provided in Section 5. Section 6 presents how SeCMER is integrated
with the SecureChange approaches to process, architecture, risk, design and testing.
Various concepts associated with the notion of change are discussed in Section 7.
Conclusions can be found in Section 8.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 28/137

2 Requirements Elicitation

The first step of SeCMER methodology is the elicitation of the security goals the
system-to-be should be built on, as highlighted in the following figure.

Figure 2 An Overview of SeCMER (Requirements Elicitati on)

A basic concept that comes into play when eliciting security goals is the concept of
asset. Assets are target of attackers who perform malicious actions, meaning attacks,
by exploiting the vulnerabilities of the system. Malicious actions compromise security
properties of the system-to-be such as confidentiality, integrity and vulnerability.
Security goals are, thus, elicited by applying a specific security mechanism to protect
an asset from harms that violates a security property.

To identify the security goals of a system it is, thus, crucial to model the assets of the
system, the need to protect the assets, the malicious intentions of an attacker that can
deny the security goals, the malicious actions the attacker carries out, the
vulnerabilities the attack exploits, and the negative impact on the assets of the system.

The SeCMER methodology’ security goals elicitation step produces a requirements
model which is an instance of the SeCMER conceptual model. The conceptual model
identifies a set of core concepts that allow linking the empirical security knowledge
such as information about vulnerabilities, attacks, and threats to the stakeholder’s
security goals. To create this link, the conceptual model amalgamates concepts from
Problem Frames (PF) [15] and Goal Oriented requirements engineering methodologies
(GORE) [17, 26] with traditional security concepts such as vulnerability and attack. The
combination of the two security goals engineering approaches has several advantages:

Change

Request
Requirements

Elicitation

System

Design

Requirements

& Change

Argument

Analysis

Requirements

Evolution

Evolution

Rules

Δ Security

Properties

Risk

Assessment

secure

after

change?

requirement

satisfiable?

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 29/137

with GORE analysis, malicious intentions of attackers can be identified through explicit
characterization of social dependencies among actors; with PF security goals analysis,
valuable assets that lie within or beyond the system boundary can be identified through
explicit traceability of shared phenomena among physical domains and the machine
itself.

2.1 The SeCMER conceptual model
The most general concept is World, which has as instances all the things that can exist
in the world. Lower levels of the conceptual model include concepts from GORE, PF
and argumentation frameworks, with security concepts occupying the lowest strata of
the conceptual model. Key among the concepts that are introduced is the concept of
Proposition, with instances such as ``Want for customers for our business" and ``Paolo
is married``. The other key concept is that of Situation, representing a partial state of
the world, e.g., ``High oil prices``, or ``Unhappy customers are many``.

Figure 3 Security Requirements Conceptual Model

A proposition is an object representing a true/false statement. A situation is a partial
state of the world described by a proposition (its description in [11]). Arbitrary
propositions are true/false/undefined in a situation, given its partial world status. The
status of the world is expressed by a predicate over the entities involved.2

Situations can have structure consisting of relationships and things standing in those
relationships. Some entities and relationships according to the common sense always
satisfy certain predicates, making them strong beliefs or trust assumptions.

Thus, the entities and relationships are modeled to reflect the predefined assumptions
about the world being modeled.

2 Note that predicates are a special form of propositions, and through reification they can be

grounded into sentences of propositions.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 30/137

Domain . Domain is specialized into Actor, Action, Asset, and Resource.3 An actor is an
entity that can act and intend to want or desire.

An action is an entity performed by an actor, which can generate events, and can have
preconditions and post-conditions. Attack (not shown in diagram) is an action that may
be carried out by an Attacker. A resource is an entity without intention or behavior. An
asset is an entity of value that can be owned and used. For example, an asset can be
an passenger (actor) whose life needs to be protected, can be an engine (process)
whose behavior has a value to the protector, or can be an aircraft (resource) whose
value are tangible for other actors. A relationship such as the organization chart of the
air traffic management organization is also an asset as long as its value needs to be
protected.

Relationships . Enumerations of Relationship include do-dependency, can-
dependency and trust-dependency adopted from Secure Tropos. These are all ternary
relationships between two actors and an asset. In addition, there are many binary
relationships that characterize other concepts in the conceptual model. For example,
actors are entities that want goals and carry out actions. Uses, and provides
relationships are also included in the conceptual model. AND/OR refinement is a
relationship between a goal and two or more other goals that indicates that a goal can
be refined into sub-goals. Provides is the relationship from an actor to a resource,
specifying that the actor provides the resource. Uses is the relationship from a process
to a resource denoting that the process generates or consumes the resource. Fulfills
relates an entity to a goal that the entity fulfills.

For the sake of security goal analysis, the conceptual model includes also the following
types of Relationship: argues, and interfaces. Argues is necessary to show whether
certain requirements can be met or not. Interfaces are links between domains. A
complete list of all the possible relationships is found in Figure 3.

Propositions . A goal is a concept found in GORE approaches, and represents a
proposition an actor wants to make true. For security analysis purposes, Goal is
specialized into Requirement, and Security Goal. A requirement is a goal wanted by a
stakeholder. A security goal prevents harm to an asset through the violation of
confidentiality, integrity, and availability security properties [14].

Situations . The Domain concept coming from PF approaches is a specialization of
Situation. This concept is useful to define the situation of system boundaries, to allow
one place focus on analysis and to hide the unnecessary details. For the analysis of
every problem or sub-problem, a different situation may be selected from the physical
world. Thus the context is a situation in which the system-to-be will operate; and a
domain is a situation that is part of the context. In PF, domains can be classified as
biddable, causal, and lexical. By biddable, a domain's behavior is not fully predicable
or controllable, usually represented by human actors or natural processes. By causal, a
domain's behavior is predicable or controllable, usually represented by activities. By
lexical, a domain's behavior is predefined, usually by a resource.

3 Actor, Action, Process, Resource, and Asset are concepts adopted from GORE approaches.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 31/137

Figure 4 Conceptual Model Representation in EBNF of xtext

Figure 3 summarizes the elements of our ontology in Extended Backus-Naur Format
(EBNF), supported by the Eclipse/TMF (xtext). Lines 1-2 introduce the default terminals
and the URI identifier of the grammar. Lines 4-23 are EBNF rules, among which the
first rule ‘Situation’ defines the root element of the model. An EBNF rule of the form ‘A:
B | C’ indicates that the concept A has sub-concepts B or C as specializations. A rule
of the form ‘A: B*’ indicates that each instance of A consists of (has parts) zero or more
instances of B. The notation ‘B+’ is similar to ‘B*’, but allows for one ore more
instances. Similarly the notation ‘B?’ indicates an optional element (zero or one), whilst
‘[B]’ denotes a reference to B instead of an optional B. Furthermore, the string
constants used in these rules are treated as preserved keywords in the concrete
syntax, such as ‘actor’, ‘goal’, etc.

The terminal ID (Lines 25-26) is an extension to the default ID in xtext. It identifies the
domains and propositions using a space-separated free-formed phrase quoted by ‘#’,
such as ‘#A security goal#’, instead of ‘a_Security_Goal’.

2.2 The SeCMER requirements elicitation process
The requirements elicitation process is an iterative process that consists of the
following steps:

1. Domain modeling
2. Goal and Action modeling
3. Trust modeling
4. Delegation modeling

The process starts with the domain modeling activity in which the relevant actors
stakeholders and existing software (subsystems) are elicited and modeled with their
goals.

Goal and action modeling focuses on the goals/requirements associated with each
actor in the actor diagram and analyzes them using various forms of analysis. In

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 32/137

particular, Means-Ends analysis aims at identifying actions, resources and goals that
provide means for achieving a high-level goal. The Contribution analysis identifies
goals that can contribute positively or negatively in the fulfillment of the goal under
analysis. The AND/OR Decomposition analysis refines a high-level goal into AND/OR
composition of sub-goals, resulting in a finer goal structure. During these analyses,
new dependencies can be discovered so as to revise and enrich the model produced.

Trust modeling consists of identifying actors who trust other actors for fulfillment of
certain goal, actions, and resources, and identifying actors which own goal, plans, and
resources.

Delegation modeling consists of identifying actors which delegate to other actors the
permission and task of execution on goals, plans, and resources.

2.3 The ATM Example
We now describe the ATM example of the scenario fragment relating to the
transmission of FDD (Flight Data Domain) data to the AMAN (Arrival Management
system) via the new communication network. First we produce SeCMER model before
the introduction of the Arrival Manager tool and the communication network.

Figure 5 A SeCMER requirement model capturing the rel evant domains before the change

Figure 5 shows a SecMER requirement model fragment capturing the relevant
domains before the changes. The model captures the given domains and their
connections as they currently are in ATM domains. The diagram shows that the Airport
Management system is connected to the Meteo Data Center and the Area Control
Centre through interfaces ‘a’ and ‘b’ respectively. ‘a’ and ‘b’ are point-to-point
communication systems before SWIM is introduced. The the Airport Management
system has several components, including the Arrival Management (AMAN) system.

Figure 6 shows another SeCMER requirement model showing how the introduction of
the SWIM Network, an IP based data transport network, changes the structure of the
ATM components, together with a simple description of the interfaces between the
components. In the after change diagram, the two specific legacy systems, namely,
Airport Management and Meteo Data Center are connected through the SWIM
network. This change, in a sense, replaces the interface ‘b’ with the SWIM network,
SWIM boxes and adapters. The diagram also makes explicit the security goal that
needs to be maintained after the change has been introduced.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 33/137

Figure 6 A SeCMER requirement model after the change

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 34/137

3 Argumentation Analysis

As discussed in the introduction, the satisfaction of security goals in the general form of
the entailment W, S ├ R needs to be argued either semi-formally or formally [14].
Security goals are often a collection of claims whose satisfaction depends on a
combination of facts, trust assumptions and domain knowledge. Arguments may rebut
and mitigate one another. This section describes the argumentation analysis step of
the SeCMER methodology as highlighted in the following figure.

Figure 7 An Overview of SeCMER (Argument Analysis)

3.1 Overview
Our argumentation is based on the informal Toulmin structures first published in the
1950’s [3]. To consider it in the formal settings, however, we have simplified the
conceptual models. The most important concepts in argumentation are defined as
follows:

• A claim is a predicate whose truth-value will be established by an argument.

• An argument contains one and only one claim. It also contains facts and
warrants.

• A fact is a grounded predicate -- something that is either true or false where
terms in the predicate must be constant.

Change

Request
Requirements

Elicitation

System

Design

Requirements

& Change

Argument

Analysis

Requirements

Evolution

Evolution

Rules

Δ Security

Properties

Risk

Assessment

secure

after

change?

requirement

satisfiable?

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 35/137

• A warrant may be either facts or a trust assumption, an ungrounded predicate
that can be evaluated to true or false once the values of all terms in the
predicate are known. A warrant link facts in an argument to the claim.

We now present a formalized meta-model of the arguments.

3.2 Meta-model of arguments
The meta-model of SeCMER arguments we implemented is described in Figure 8.

Figure 8 Meta-Model of the Argumentation

• An argument diagram may have several arguments linked to each other.

• Every argument has an optional timestamp, which indicates the time (or the
round) during the argumentation process at which the argument is introduced.
For a given argument, an initial iteration is to establish the truth of its associated
claim. The initial claim needs to be supported by some facts, and warranted by
either further fact(s) or sub-argument(s). Since a warrant in an argument can be
an argument, arguments can be nested. This allows high-level arguments to
rely upon predicates the truth values of which are established by later sub-
arguments. Therefore, these sub-arguments are also arguments, but they are
meant to provide supporting evidence (as sub-claims).

• As well as internal nesting of arguments, arguments may be related to each
other through rebuttal and mitigation/restore relationships. A rebuttal argument
is a kind of argument whose purposes are to establish the falsity of their
associated argument or make them inconsistent. Similarly, mitigations are
another special kind of arguments following the iteration of rebuttals in order to
reestablish the truth-value of the associated original claims. Mitigations may or
may not negate the claims of the rebuttals: sometimes they add further facts
overlooked by the rebuttals. In cases of arguments with several levels of

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 36/137

rebuttals and mitigations, it is desirable to show explicitly the original argument
whose claim a mitigating argument is targeting at. For this purpose, the restore
relationships are used between the mitigation relationship and the original
argument. The arguments that introduce the rebuttal and mitigation
relationships do not need to contain all the facts and rules. Only incremented
facts or rules need to be kept in such follow-on arguments because they are
always applied after previous arguments. Of course, throughout the
argumentation, the same reasoning mechanism should be used consistently for
all arguments.

3.3 Visualizing SeCMER Argumentation
We have extended the OpenPF tool4 to support the informal argumentation described
by the meta-model in Figure 8. One aspect of the tool is to allow security engineers to
document and visualize the argument structures before and after introducing a change.

Figure 9 Textual Input Syntax and Visual Syntax of Se CMER Arguments

The diagram in Figure 9 shows the input textual syntax and visual syntax of an
argument in the OpenPF. An argument is represented as a node with three
compartments. At the top of a node is a label indicating the ID and description of the
claim, together with the timestamp (round number). The grounds are written as nodes
inside the middle compartment and the warrants are written as nodes inside the bottom
compartments. Warrant may be either a fact or an argument, thus allowing nesting of
sub-arguments.

4 The tool and examples here can be downloaded from http://sead1.open.ac.uk/openpf/ and

http://computing-research.open.ac.uk/trac/openre/wiki/Examples/argument/SecureChange

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 37/137

Figure 10 Visual Syntax of Links between Arguments

Furthermore, in an argument diagram, there may be more than one argument, which
are related to each other through rebuttal and mitigation links. Figure 10 illustrates
these four links: rebuttal link is represented by a red dotted line, whilst the mitigation
link is represented by a solid green arrow. Purple dashed arrows represent relationship
between facts (or trust assumption) whose value has been negated in a rebuttal or
restored by a mitigation. The optional solid pink arrow shows the rebuttal the mitigation
addresses in restoring the initial argument, which is useful when there are several
rebuttals to an argument and several mitigations to those rebuttals.

3.4 Formally Checking Links between Arguments
Once visualized in this way, arguments during the change process can be evaluated
formally. To illustrate this point, in this section we use proposition logic as the
underlying formalism, whilst Section 3.3 will extend the formalism to temporal logic to
reason about the software behaviors. We have implemented the algorithm described in
Figure 11, which uses the rule that for each argument the validity can be established
by checking that Ground /\ Warrant → Claim assuming that Ground and Warrant are
true. By adding and removing grounds and warrants in later rounds of arguments, the
validity of the initial argument is rechecked. For each path in the argument structure,
we first check the rebuttal arguments (lines 2-14) before checking the mitigation
arguments (lines 14-24).

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 38/137

Figure 11 The algorithm for checking rebuttal and m itigation arguments

We will now illustrate the idea of the algorithm using the example introduced in Figure
9.

1. Starting from the example root node A1, in Round #1, we have:

W0 ⇔ (F1, A2 → A1)………//implicit in the A1 structure and W0 is a shorthand

F2 → A2…………………….//implicit in the A2 structure

F1, F2,W0 …………….……//grounds and warrant of A1 and A2

2. Rebuttals negate the associated facts or the claims. By introducing the change
in A3 at the round #2, for example, we have

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 39/137

3. W0 ⇔ (F1, A2 → A1)……//implicit in the A1 structure

F2 → A2………………..…//implicit in the A2 structure

F2, W0 ……….……………//removing F1 by A3

F3, F4 ………………………// grounds of A3

F3, F4 → A3 …………..……//implicit in A3 structure

A3 ⇔ ¬ F1…………….…….// given in A3 structure

It is thus possible to establish that ¬A1 can be satisfied, which denies the original
claim in A1. Thus A1 is rebutted by A3. Similarly, the changes introduced by A4 at the
round #2 also rebut the claim of A1:

1. A4 ⇔ (F1, A2, !F5 → A1)……//W0 replaced by A4

F2 → A2………………………//implicit in the A2 structure

F5 → A4………………………//implicit in the A4 structure

F5 …………..…………………//ground of A4

F1, F2 …………..……………//ground of A1 A2

From these examples one can see that the claim of an argument may be rebutted in
more than one way.

A mitigation argument may negate the effect of a rebuttal by restoring the truth of the
original claim. For example, after round #3 in A6, in relation to A3 we have

1. W0 ⇔ (F1, A2 → A1) .…………… .……………//implicit in the A1 structure

F2 → A2…………….…………….…………..…//implicit in the A2 structure

F2, W0 ………….…………….…………………//removing F1 by A3

F3, F4 …………..….…………….………………// grounds of A3

F3, F4 → A3 ……….…………….………………//implicit in A3 structure

A3 ⇔ ¬ F1……..…….………………………….// given in A3 structure

A6 ⇔ (¬F5 & F2 & F8 & F6 & F7 → A1) ……//given in A6 structure

F6, F7, F8 → A6 …...…………….…………… //implicit in A6 structure

F6, F7, F8 ….…………….…………….………// grounds of A6

¬F5….…………….…………….………………//not a given fact in A1, A3 and A5

This partial argument shows that there is an outstanding rebuttal to argument about the
system security after change. In particular, the rebuttal argument A4 needs to be
mitigated in order to make the system secure after change.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 40/137

3.5 Arguments and the conceptual model
Arguments provide a way to structure the system artifacts involving the concepts in the
conceptual model (Figure 3). Indeed, the conceptual model introduces the concepts in
argumentation, but their relationships to other concepts are further explored now.

Goals and requirements are generally regarded as claims, warrants are the context,
and propositions, including the relationships, are the facts. Other domain concepts
such as action, resource and actor are orthogonal to the propositions of an argument,
in the sense that they can be used in the description of any part of an argument.
Moreover, one can describe the behavioral semantics using the temporal predicates
supported by the Event Calculus formalism, which is explored in the next section.

3.6 Formalization of arguments using the Event
Calculus

First introduced by Kowalski and Sergot [16], the Event Calculus (EC) is a system of
logical formalism, which draws from first-order predicate calculus. It can be used to
represent actions, their deterministic and non-deterministic effects, concurrent actions
and continuous change. We chose the EC formalism, because it is suitable for
describing and reasoning about event-based temporal systems such as the Air Traffic
Management systems. Several variations of EC have been proposed, and the version
we adopted here is based on the discussions in [24]. The calculus relates events and
event sequences to fluents, or time-varying properties, which denote states of a
system. Table 1, based on [21], gives the meanings of the elementary predicates of the
calculus we use in this paper.

Table 1 Elementary Predicates of the Event Calculus

Predicate Meaning

Happens(a, t) Action a occurs at time t

Initiates(a, f, t) Fluent f starts to hold after action a at time t

Terminates(a, f, t) Fluent f ceases to hold after action a at time t

HoldsAt(f, t) Fluent f holds at time t

t1 < t2 Time point t1 is before time point t2

The domain independent rules in Table 2, taken from [21], state that: Clipped(t1, f, t2)
is a notational shorthand to say that the fluent f is terminated between times t1 and t2
(EC1), Declipped(t1, f, t2) is another notational shorthand to say that the fluent f is
initiated between times t1 and t2 (EC2), fluents that have been initiated by occurrence
of an event continue to hold until occurrence of a terminating event (EC3), fluents that
have been terminated by occurrence of an event continue not to hold until occurrence
of an initiating event (EC4), and truth values of fluents persist until appropriate initiating
and terminating events occur (EC5 and EC6).

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 41/137

Table 2 Domain independent rules of EC

Clipped(t1, f, t2) ≡ Ǝa, t[Happens(a, t) /\ t1 ≤ t < t2 /\ Terminates(a, f, t)] (EC1)

Declipped(t1, f, t2) ≡ Ǝ a, t[Happens(a, t) /\ t1 ≤ t < t2 /\ Initiates(a, f, t)] (EC2)

HoldsAt(f, t2) ← [Happens(a, t1) /\ Initiates(a, f, t1) /\ t1 < t2 /\ ¬Clipped(t1, f, t2)] (EC3)

¬HoldsAt(f, t2) ← [Happens(a, t1) /\ Initiates(a, f, t1) /\ t1 < t2 /\ ¬Declipped(t1, f, t2)] (EC4)

HoldsAt(f, t2) ← [HoldsAt(f, t1) /\ t1 < t2 /\ ¬Clipped(t1, f, t2)] (EC5)

¬HoldsAt(f, t2) ← [¬HoldsAt(f, t1) /\ t1 < t2 /\ ¬Declipped(t1, f, t2)] (EC6)

In our approach to formalising the arguments, claims are constraints on the
combinations of fluent capturing the required states of the system. System context
captures the facts and warrants. We now define them more formally.

Definition 5.1: Claims consist of a finite conjunction of (¬)HoldsAt predicates. Reference
phenomena (Γ) are observations describing the given state of the system, while
controlled phenomena (Γ’) are observations describing the desired state of the system. A
claim is expressed either as

• ground observations Γ’, without any reference to the given state of the resource
or given action of the processes, or

• as a relationship between the reference and the controlled phenomena, such as
a constraint of the form Γ→Γ’, or an action precondition axiom of the form
(¬)Happens(f1, t) → Γ’ where the antecedent is an occurrence of an action in the
system (for example, to say that when an event a1 happens at time t, the fluent
f1 must be true at t1).

For example, the claim HoldsAt(AircraftOnGround, t) /\ 0 <= t <= 9 says that the aircraft
are on the ground between the timepoints 0 and 9 range; the claim HoldsAt(Airborne, t)
→ HoldsAt(TransponderOn, t) says that as long as the aircraft remains airborne, the
transponder is on; and the claim Happens(BreachSD, t) /\ ¬Happens(Clearance, t2) /\ t <= t1
<= t2 → HoldsAt(AlarmRaised, t1) says that as soon as the separation distance is
breached, the alarm is raised until the clearance happens.

Definition 5.2 : Facts are described as ground observations.

Definition 5.3 : Warrants in this formalisation can be described in a number ways.
Firstly, it can be expressed as a finite conjunction of the event occurrence constraints (Ψ)
of the form (¬)Happens(a1, t) /\ (¬)HoldsAt(f, t) → (¬)Happens(a2, t) where a1, a2, t, and f are
terms for the action, time point, and fluent respectively.

Secondly, warrants may be expressed as event-to-condition and condition-to-event
causality. The first causality deals with what happens to the fluents when events occur,
and the second causality deals with the domain properties that lead to the occurrence

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 42/137

of certain events. In the Event Calculus, the event-to-condition causality is described
as a finite conjunction positive effect axioms and negative effect axioms (Σ) of the form
Initiates(a, f, t) ←Π or Terminates(a, f, t) ←Π where Π has the form (¬)HoldsAt(f1, t) /\ ...
/\(¬)HoldsAt(fn, t) and t, and f1 to fn are terms for the time and fluent respectively. The
condition-to-event causality is described as a finite conjunction of trigger axioms (∆2) of
the form Happens(a, t) ←Π. For example, the following statement says that if the aircraft
has transponder, an occurrence of the event interogateTransponder has an effect of
making BroadcastACInfo true.

Initiates(interogateTransponder,BroadcastACInfo, t) ← HoldsAt(HasTransponder, t)

Similarly, the following statement says that the fluent OperatorHasWeatherInfo on
becoming true, generates the event sendWeatherInfo because of the functionality
SendWeatherInfo.

Happens(sendWeatherInfo, t) ← HoldsAt(OperatorHasWeatherInfo, t) /\

¬HoldsAt(OperatorHasWeatherInfo, t -1)

Note that the condition ¬HoldsAt(OperatorHasWeatherInfo, t-1) is necessary to prevent
stuttering of the event sendWeatherInfo when the fluent OperatorHasWeatherInfo
holds continuously.

Definition 5.4 : Arguments in this formalism relies on two assumptions. One is the
consistency of the domain theory Σ and observations Γ and Γ’. Another is the
uniqueness of fluent and event names, meaning that no two names denote the same
thing. This uniqueness axiom is represented by Ω. If the system relies on the feedback
from the environment (∆2) and observations about the environment (Γ), an argument
can be formalised as follows:

Σ /\ Γ /\ ∆2 /\ Ψ ╞ Γ’

That is, given the facts (observations about the environment Γ), warrants (a theory of
the domain Σ, feedback from the system environment ∆2, and a specification Ψ), and
an appropriate deductive system, we want to show that the claim can be satisfied.

Definition 5.5 : Rebuttals are counterexamples to the satisfaction of the claim, and are
defined as follows. When restricted to event occurrences, rebuttals are found through
logical abduction in the Event Calculus. We first pose a logical abduction problem in
order to find all constructive hypotheses (∆1) explaining how, given the domain theory
(Σ /\ Γ /\ ∆2), the claim (Γ’) can be denied, i.e.

CIRC[Σ; Initiates; Terminates] /\

CIRC[∆1 /\ ∆2;Happens] ^ Γ ^ Ω ╞ ¬Γ’

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 43/137

where ∆1 is consistent with the domain theory and CIRC is the circumscription operator.
∆1 is a partially ordered sequences of event occurrences that, given the physical
domains, leads to the claim not being satisfied. The circumscription operator assumes
that no events other than those by ∆1 and ∆2 may occur.

Definition 5.6 : Mitigations are facts and/or warrants that remove rebuttals from the
argument, i.e. ∆1 above is empty.

3.7 Arguments and the model transformation
Claims can be general. For example, “The Arrival Management (AMAN) system from
the air traffic management domain is safe and secure” can easily invite different
opinions. To support such claims, one need to use the facts or domain knowledge
specific in the field; to refute the supportive evidence for the claims, one can draw on
additional (often non-monotonic or negative) facts and domain knowledge to form claim
rebuttals.

As a result, after argumentation analysis is done, one may turn the arguments into
evolution rules as follows:

• The facts and domain knowledge rules that cause a rebuttal argument are
generated into a pattern that match the SeCMER requirements model;

• The new facts and domain knowledge rules introduced by a mitigation
argument (some of them are new security properties) are generalized into an
incremental transformation where the “before” state of the transformation is the
SeCMER requirements model before the mitigation, and the “after” state of the
transformation is the SeCMER requirements model after the mitigation.

Both the pattern and the incremental transformation may be represented explicitly as
an evolution rule in the SeCMER methodology in hope that similar changes that may
rebut the satisfaction of similar existing properties can be mitigated automatically.

In case it is not possible to generalize, the instance level changes will be kept as trivial
evolution rules that only matches with the exact situation and does the exact mitigation.
Such trivial rules can still be useful to help a regression analysis.

More detailed evolution rules as generalized mitigations can be seen in Section 6 and
7. A detailed example of the argumentation analysis is given in Section 8, along with
the application of the whole SeCMER methodology.

3.8 Tool-support for formal argumentation
An overview of the tool-support for argumentation in OpenPF is given in Figure 8.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 44/137

Figure 12 An overview of OpenPF support for argument ation

The workflow starts with the development of a security requirements model in the
elicitation stage using the Situation ontology. The OpenPF plug-in ontology2argument
generates structure of an informal template, which can be edited by the user.
Requirements engineer uses the requirement model to sketch informal arguments for
the security goals of the evolving system that will be affected by the proposed change.
The informal arguments and the formalized requirements are then used by another
plug-in, argument2ec, to generate arguments formalized in the Event Calculus. At this
point, two kinds of reasoning can be performed on the arguments: logical deductive
reasoning to check whether claims in the arguments are valid, and logical abductive
reasoning to find rebuttals to the claims (see Definitions 5.4 and 5.5). Both types of
reasoning are supported through the OpenPF integration of the Event Calculus tool
decreasoner.

3.8.1 ATM Example

We now step through OpenPF support for argumentation using the ATM example
introduced in Section 2.3. We begin by recalling the structure of the ATM system
before the change is introduced (Figure 5). Note that the diagram shows the relevant
domains and their connections as they currently are in ATM domains. The diagram
shows that the Airport Management is connected to the Meteo Data Center and the
Area Control Centre through interfaces ‘a’ and ‘b’ respectively. ‘a’ and ‘b’ are point-to-
point communication systems before SWIM is introduced.

Requirement

Engineer

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 45/137

After applying the transformation rules to accommodate the change, the diagram in
Figure 6 shows another SeCMER requirement model where the point-to-point
communication between two specific legacy systems, namely, Airport Management
and Meteo Data Center are replaced by with the SWIM network, SWIM boxes and
adapters. The diagram also makes explicit the security goal that needs to be
maintained after the change has been introduced. This corresponds with the Elicitation
and Evolution Rules steps in Figure 12.

ontology2argument is a semi-automated step where the requirement engineer uses the
OpenPF tool to create information argumentation diagram. The information
argumentation process may go through several rounds. At the beginning, the
engineers assume that the current ATM is secure because of certain facts and warrant
(Figure 13).

Figure 13 Argument for Security of AMAN before chang e

Introduction of the SWIM network as shown in Figure 6 adds new domains, facts and
warrant which call for the argument to be revised. In particular, we have a new
argument that rebuts the orginal argument that the AMAN is secure.

Figure 14 Argument for Security of AMAN before chang e

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 46/137

Having discovered the vulnerabilities brought about by the proposed introduction of
SWIM system, the requirements engineers and the security experts identify various
ways to mitigate the rebuttal in order that the initial claim for AMAN security is restored
(Figure 15).

Having done the argument analysis, we discovered that the original requirement for
system security, namely Protection of FDD (Flight Data Domain) info, couldn’t be
maintained after the change has been introduced. Mitigations in the arguments led to
discovery of additional security properties that need to be discharged in order to
maintain the overall system security. Figure 16 shows a SeCMER requirement model
for an additional security property. It stresses the necessity to change required security
properties in order to accommodate changes while maintain the same security level.
The introduction of the AMAN and the SWIM Network requires additional security
properties. They include: ‘Queue Management Information shall not be accessible by
meteo data centres’, or ‘Queue Management Information shall not be accessible by
anyone other than those working with AMAN’. The structured SeCMER’s
argumentation supports the verification of such additional properties.

Figure 15 Argument for Security of AMAN after the mi tigations

Figure 16 A SeCMER requirement model for a relevant S ecurity Property with respect to Changes

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 47/137

We now illustrate how the initial argument for the system security is broken, by
generating counter-examples in the Event Calculus using the abductive reasoning of
OpenPF. Our discussion will focus on the protection of FDD data, and in particular the
Queue Management Information (QMI), of the Airport Management system. Since we
assumed that the existing system before the change is secure, the FDD data is initially
protected. In the event calculus, we will write:

!HoldsAt(Accessed_FDD_data_SN(),0).

For the current system, this property can easily be proven. What is of interest is to
check whether the property remains true after the change has been introduced. To do
this, we input the diagram in Figure 6 into OpenPF. Figure 17 shows the textual input
to create the diagram in Figure 6.

Figure 17 Textual input to create the diagram in Fi gure 6

In the next step, we generate the diagram shown in Figure 6. We then invoke an
OpenPF plug-in that generates the Event Calculus template for the above diagram. A
partial template is shown in Figure 6. This corresponds with the argument2ec step of
Figure 12.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 48/137

Figure 18 The Event Calculus template generated by t he OpenPF tool

In the next step, we describe the behaviour of the domains. For instance, to say that
the Adapter B instantly forward FDD data from the Airport Management (via interface f)
to the SWIM-Box B (via interface e), we write:

[time] Happens(Send_FDD_data_8101_e(),time+1) <->
Happens(Send_FDD_data_7777_f(),time).

Similarly, to say that the SWIM-Box B instantly publishes the information to the SWIM
Network (via interface d) when it receives FDD data from the Adapter B (via interface
e), we write:

[time] Happens(Publish_FDD_data_d(),time) <-> Happens(Send_FDD_data_8101_e(),time).

When the FDD data is published with the SWIM Network, the SWIM Network has the
FDD data.

[time] Initiates(Publish_FDD_data_d(), Has_FDD_Data_SN(),time).

If SWIM-Box A has subscribed to the SWIM Network, and if the SWIM Network has the
SWIM data when SWIM-Box A attempts to get it, then the FDD data has been
accessed. This is described by the following rule.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 49/137

[time,time1] Happens(Subscribe_SWIM_data_c(),time1) & (time1 < time) &
HoldsAt(Has_FDD_Data_SN(),time) ->
Initiates(Get_SWIM_data_c(), Accessed_FDD_data_SN(),time).

Requests by Airport Management and Meteo Data Center for FDD data and Meteo
data can be described in the same way.

In the next step, we invoke the abductive reasoned the OpenPF tool to see if the
security property !HoldsAt(Accessed_FDD_data_SN(),0) has been broken. The
reasoner returns the two models shown in Figure 19. The first model says that the
security property Accessed_FDD_data_SN() will become true, i.e. the security is
broken, if the Airport Management publishes FDD data to the SWIM Network to which
the Meteo Data Center has subscribed for FDD data. The FDD data available to the
Meteo Data Center may be outdate because the Airport Management has published
more FDD data since the Meteo Data Center has requested it. The second model is
similar to the first: the difference being that the FDD data is most up-to-date. This
corresponds with the Abductive and Deductive Reasoning step of Figure 12.

Figure 19 Results of the abductive reasoning on the change

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 50/137

4 Process Automation by Evolution Rules

The SeCMER approach prominently features an automated step, as highlighted in the
following figure.

Figure 20 An Overview of SeCMER (Requirements Evolutio n)

This work phase is carried out automatically by monitoring the existing requirements
model (as well as other interconnected models) and reacting to applied changes.
Declarative change management artifacts called Evolution Rules define when to
intervene, and optionally how to react. With carefully specified evolution rules, the
automated rule application can save significant manual effort, e.g. in the argumentation
phase.

Upon each change, reactions are performed iteratively as long as any evolution rules
are still applicable. Therefore the requirement model serves both as input and output of
this system component. Further inputs include the changes experienced by the
requirement model, and the definition of the evolution rules themselves.

Section 7.1 elaborates why and how evolution rules can be a useful contribution to
SeCMER methodology. Section 7.2 presents some background knowledge from the
field of model transformation, on which our proposed concept of evolution rules is
based. Section 7.3 explains the conceptual model of Evolution Rules, while Section 7.4
gives precise mathematical foundations.

Change

Request
Requirements

Elicitation

System

Design

Requirements

& Change

Argument

Analysis

Requirements

Evolution

Evolution

Rules

Δ Security

Properties

Risk

Assessment

secure

after

change?

requirement

satisfiable?

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 51/137

4.1 Goals for the evolution rules
There are at least three ways requirements modeling environments can benefit from a
mechanism for automated (rule-based) reaction to changes:

• Internal consistency checking and on-the-fly evaluation of well-formed
constraints,

• Synchronization against other models (risk analysis, design, etc.) and
information propagation via model transformation techniques,

• Saving human efforts by identifying the extent and influence of change to
determine where manual change analysis and argumentation is needed, by
preparing automatically deducible information for this manual reasoning, and
possibly by complete automation of simpler, deterministic steps of the
argumentation process.

The task of constraint evaluation is not specific to requirements or security engineering,
only to the actual conceptual models. Therefore it can be considered out of scope for
SecureChange, and will not be discussed here in detail. Results of this approach are
shown in [23].

Integration with other models outside the requirements scope is a future task for
SecureChange, and will be discussed in upcoming deliverables.

The current deliverable focuses on the third type of automation, which is specific to the
domain of (security) requirements evolution, and closely tied to the methodology. We
argue that requirement modeling environments should be equipped with a change
sensor automatism that is capable of identifying the effects of the change and thereby
reducing the amount of required human effort to deal with the change. We propose that
Evolution Rules be defined to accomplish the following:

• By operating over an interconnected requirement model and argumentation
model, evolution rules can identify cases when a change in the model
influences an evidence in support of a previous argumentation activity, and
consequently flag the argument for manual re-evaluation

• Efficient identification of security goals whose satisfaction is implied by the
model. Raise alerts (e.g. towards the argumentation staff) if a previously
satisfied goal becomes unsatisfied (more precisely, if the satisfaction not
provable anymore) due to changes in the model. Cases where the satisfaction
of a rule can be determined automatically include the following:

o There is already a valid (not flagged) argument, constructed in a
previous argumentation session that decisively supports the satisfaction
of the goal.

o The goal is decomposed (AND/OR) into subgoals, and its satisfaction is
implied by the satisfaction of subgoals.

o In some cases, model entities connected in a certain way may
automatically imply the satisfaction of the goal. For example, if the goal
is delegated to an actor, who carries out an action that fulfills the goal,
and there is no corresponding attacker with an anti-goal, than the goal
can be considered satisfied without manual argumentation. Some of

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 52/137

these rules are expected to be domain-specific (e.g. ATM-only) and to
emerge from the argumentation process by carefully scrutinized
inductive optimization and rule formalization.

o Similarly, it can be determined by given (possibly domain-specific)
conditions that artifacts in other models (through traceability relations)
automatically guarantee the satisfaction of the goals.

• Automatically making decisions and deterministic changes to the requirements
model, or instantiating several options (i.e. draft solutions) and offering them to
the requirement engineers, if and when such automation is applicable. Once
again, such rules are expected to be domain-specific (e.g. for ATM) and to
emerge from the argumentation process by carefully scrutinized inductive
optimization and rule formalization.

The list above is not necessarily exhaustive, and while we will show a number of
examples (see Section 8) some rules are expected to be specific to the application
domain / case study. Therefore the focus is primarily at the proposed language and
mechanism for defining and efficiently evaluating evolution rules.

The framework and language for specifying evolutions rules for the security-related
aspects of the engineering model should

• support complex structural requirements that are difficult and error-prone to
oversee manually;

• allow the capturing of change events in terms of similarly complex structural
relations, thereby treating change as a first-class citizen;

• provide automated alerting of criteria that cease to be satisfied;

• allow flexible adaptation to domains, e.g. ATM;

• enable the flexible, scenario-specific definition of the aforementioned complex
criteria;

• enable the engineer to define automated reactions to change events where
applicable;

• enable the reactions for automatic reconfiguration of the design model;
automatic application of security-related design decisions; and automatic
reusing of design artifacts (e.g. argumentations), to be filled later by the
engineers, that are required for a system evolution to be admissible from a
security viewpoint.

4.2 Application of evolution rules in SeCMER
There are two processes where Evolution Rules play a role. The reason for the
existence of Evolution Rules is to exert their influence during the “Requirements
Evolution” process in the maintenance phase, and there is also a separate process for
defining evolution rules.

The requirements model and other related models (altogether Integrated Model) may
experience an evolution that moves them out of a consistent, secure state. Automatic
detection of the undesired nature of change and the potentially automated reaction is

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 53/137

the prime benefit of using evolution rules. This change detection mechanism applies
regardless whether the change is merely a simulation of an anticipated future change,
or actually initiated by a stakeholder request, or applied as a reaction to a previous
change, or caused by external circumstances and merely observed.

Defining evolution rules is driven by the anticipation of such changes. The most
important step is formalizing the conditions and events under which a reaction is
necessary, using the provided language for Evolution Rules. The formal definition
enables the automatic mechanism to detect these changes. In case solution templates
can be readily identified in advance, these can also be attached to Evolution Rules as
reactions. Some evolution rules will be indentified at the start of the project lifecycle,
adapted to the domain and modeling style; others will be established later on the go.
The latter case is embedded in or triggered by security engineering processes. We
believe argumentation is the most likely subprocess where new evolution rules will be
introduced, to reduce future human effort.

A typical example of the proposed workflow would happen the following way. We
investigate the possibility of a future external change by simulating it in the model. The
change directly results in a model state that is inconsistent with security constraints, as
determined by the argumentation process (possibly communicating with risk analysis
and architectural modeling processes). The output of the process will be a solution to
this specific kind of change, and optionally pre-emptive modifications to brace the
system for the effects of the anticipated change. Additionally, it is determined that the
decision can be generalized to a range of similar potential changes that are structurally
similar and cause similar security concerns. After carefully analyzing all conditions, this
class of changes are formally captured by an Evolution Rule. If the resolution in these
cases cannot be automated, then the only reaction rule will trigger is to alert the
engineers and prompt them to perform analysis; otherwise solution templates can also
be created for the rule. Finally, the new Evolution Rule is deployed, and from that point
onwards, it will contribute to monitoring and reacting to changes, be they experiments,
changes in external factors, stakeholder requests or themselves reactions to preceding
changes.

4.3 Underlying model transformation technology
The language and efficient implementation of evolution rules relies on technology
pioneered for automated model transformations. As revealed in many surveys and
papers during the recent years [7, 8, 12], model transformation (MT) languages and
tools play an important role in modern model-driven system engineering in order to
query, derive and manipulate large, industrial models.

As a typical example, tool integration requires that a complex relationship be
established and maintained between models conforming to different domains and
tools. In the context of SecureChange, synchronization involving requirement and
design models would pose a transformation problem.

Model synchronization tasks can be formulated as the obligation to keep a model of a
source language and a model of a target language consistently synchronized while the
underlying source model (and sometimes the target also) is evolving. Model
synchronization is frequently captured by transformation rules [3]. When the

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 54/137

transformation is executed, traceability links are also generated to establish logical
correspondence between source and target models.

Traditionally, model transformation tools support the batch execution of transformation
rules, which means that input is always processed “as a whole”, and output is always
regenerated completely. However, in case of large, complex, and continuously evolving
models, batch transformations may not be feasible. To address the issue of model
evolution, incremental model transformations (i) update existing target models based
on changes in the source models [23], and (ii) minimize the parts of the source model
that need to be reexamined by a transformation when the source model is changed [5].
In the terminology of [8], these aspects are called target and source incrementality,
respectively.

Since rules are defined in terms of patterns and actions, pattern matching plays a key
role in the execution of model transformations. The goal of pattern matching is to find
the occurrences of a pattern, which imposes structural as well as type constraints on
model elements. Source incrementality can be achieved by employing incremental
pattern matching techniques; for example, the RETE [10] incremental algorithm was
used in [5].

The central idea of incremental pattern matching is that occurrences of a pattern are
readily available at any time, and they are incrementally updated whenever changes
are made. As pattern occurrences are stored, they can be retrieved in constant time –
excluding the linear cost induced by the size of the result set itself –, making pattern
matching a very efficient process. Benchmarks [4] and practice have shown that
incremental pattern matching can improve performance or scalability by up to several
orders of magnitude in certain scenarios.

Based on source incrementality, it is also possible to detect the appearance and
disappearance of pattern matches efficiently. Ráth et al [23] introduced a live
transformation approach where a model change is captured by a change in the match
set of a graph pattern, and transformation rules are triggered by such events.

4.4 Conceptual model for evolution rules
Evolution rules control how one model, or an interconnected set of models, follow the
evolution of a source model in order to maintain security and other objectives (Figure
21) Evolution rules are defined in conformance with the Event – Condition – Action
semantics [2] to specify the desired reaction to changes performed on the model.

Basically, an Event captures an elementary transition of the system to a different (not
necessarily internally consistent) state, identifying the change that happened between
the two states. An Action is a list of operations that constitute the reaction to that event.
The strength of the formalism is that the reaction can depend on the context where the
event happened, as defined by the Condition part. Event and Condition both serve as a
way of monitoring the evolution of a system. The key difference is that Event captures
a dynamic change in the system, while Condition identifies the static context where this
change happened.

The Event part of the evolution rule is matched against every change executed on the
model. The Condition may restrict the cases where the rule is applicable, and may
select multiple ways to apply it. The Action part manipulates the model by issuing

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 55/137

change commands itself; these changes will eventually be processed like any other
change operation, and reacted upon by evolution rules.

Figure 21 Conceptual model for evolution rules

Various kinds of change commands can be issued. The most basic change kinds are
the creation of entities and relationships of a specific type, deleting them and modifying
their values. This list of change kinds is extensible to incorporate a more refined notion
of changes, or domain specific change macros.

An actual change command has a change kind and refers to actual entities or
relationships as affected elements. The definition of an evolution rule, however, refers
to rule variables as affected elements instead. The Event part match changes against
one or more change queries. Each of them captures the change in terms of the
appearance or disappearance of element configurations (patterns). An attribute
contains the sign of the change query. The appearing/disappearing element
configuration of the change query is described by a set of predicates formed on rule
variables. The Condition part describes the context of the event, likewise with
predicates on variables. Some of these variables are typically used by the change
queries as well. The two most common predicate types are entity predicates
(constraining a variable to a given entity type) and relation predicates (constraining a
variable to a given relation type, connecting a source variable and a target variable).
The Action part contains a sequence of reaction templates that are parameterized by
rule variables appearing in the Event, Condition or even preceding reaction templates,
and can be instantiated into applicable commands by substituting the parameter

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 56/137

variables. The most important type of reaction template is the change template that can
be instantiated into a change command of a certain change kind. The evolution rule
contains all variables mentioned by the Event or the Condition, a subset of which is
accessed by the Action.

Change queries are intended to match actual change events that cause the
appearance or disappearance of the appropriate patterns, and substitute the variables
to the affected elements. After that, the Condition is evaluated to decide whether the
rule can be applied for this particular change, and to substitute remaining free
variables. The Action is applied for each possible substitution; this means instantiating
all reaction templates with the substituted values of variables. In case of change
templates, the resulting change commands can be submitted for execution and
evolution rule application.

4.5 Mathematical foundations
The notion of Evolution Rules has precise mathematical underpinning based on the
theory of graph transformation. For purposes of formalization, we represent the
requirement model and other associated models such as design as (attributed) graphs.
Whether and when a rule is applicable is determined by the formalism of graph
patterns in case of static models; or the more advanced graph change patterns in case
changes are taken into consideration. The formal foundations presented here are a
simplified version of the definitions in [6].

4.5.1 Graph Patterns

Our Evolution Rule formalization relies on the concepts of graph model, graph pattern,
pattern matching and NAC (negative application condition), widely known in the field of
graph transformation.
Definition 1 (Graph Model) A graph model over a type system Type is a structure

G=〈Ent,Rel,src,trg,typ〉 where Ent is a set of entities (graph nodes), Rel is a set of

relations (graph edges); src,trg:Rel→Ent map the relations to their source and

target entities, respectively; and the typing of elements is typ:GE→Type where GE

is an abbreviation for the set of graph elements Ent∪Rel.

Our graph model assumes that each entity and relation takes its type from a type
system which is simplified here to a set of predefined types. Note that we make no
assumptions on the actual types here, so that model elements from other modeling
domains can be represented in connection with requirements. The notion of type
compatibility is beyond the scope of this simplified formalization. Various other model
features such as containment or attributes are also omitted here for brevity.

Definition 2 (Graph Pattern) A graph pattern P=〈V,C〉 over a type system Type

contains a set V of pattern variables, and a set of graph constraints C=Cent∪Crel

attached to them. Entity constraints Cent⊆V×Type state that a variable is a node of a

certain type. Relation constraints Crel⊆V×Vrel×V×Type state that a variable is an

edge of a certain type, connecting two given variables representing the source and

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 57/137

the target of the edge. To identify the variables and constraints of a specic pattern

P, we use V(P) and C(P), respectively.

The pattern language also permits additional constraints such as containment, equality
and inequality, attribute constraints, or pattern composition, which are not detailed
here.

Definition 3 (Graph Pattern Match) A substitution s:P→G of a graph pattern

P=〈V,C〉 in a graph model G=〈Ent,Rel,src,trg,typ〉 over a type system Type is a set of

variable assignments asgn∈V×GE, one for each variable v∈V. Let s(v)∈ME denote

the model element assigned by s to the variable v∈V.

A substitution satisfies an entity constraint c=〈v,t〉∈Cent iff typ(s(v)) is compatible

with t. A substitution satisfies a relation constraint c=〈v,a,b,t〉∈Crel iff src(s(v))=s(a)

and trg(s(v))=s(b) and typ(s(v)) is compatible with t.

A match m:P→G is a substitution that satisfies all constraints c∈C of P, which will

be denoted by G,m⊨P. 5

A negative application condition (NAC, indicated by the neg keyword) prescribes
contextual conditions that, if satisfiable, invalidate a match of the pattern.

Definition 4 (Graph Pattern with Negative Application Condition) A pattern

with NAC is PN =〈P,N*〉 where P=〈V,C〉 is a (positive) graph pattern, and N* is a set

of negative application conditions Ni=〈Vi,Ci〉, each being a well-formed graph

pattern, such that P⊆Ni meaning that V⊆Vi and C⊆Ci.

Commonly, only the subpattern SNi=Ni\P is explicitly indicated and depicted in figures
and code extracts, which is defined as SNi=〈SVi;SCi〉, where SCi=Ci\C and SVi⊆Vi is
the set of variables involved in SCi.

Definition 5 (Match of Graph Pattern with NAC) A match m:PN→G of PN=〈P,N*〉

in graph model G is a match of the positive pattern G,m⊨P, where there is no

Ni∈N* and match mi:Ni→G such that m⊆mi (meaning that mi(v)=m(v) for all v

variables of P).

Some graph pattern languages, including the one that will serve as the basis of
Evolution Rules, even permit NACs to have NACs of their own. If there is no limit on
the number of negations that can be nested within each other, graph patterns (without
attribute constraints) become expressively equivalent to first order formulae over the
predicates describing the graph model [9].

5 Remark: from now on, we assume that a single type system Type is given, and will not include it in

each further definition.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 58/137

4.5.2 Graph Change Patterns

We define the advanced formalism of Graph Change Patterns (not to be confused with
the change pattern concept of WP2) to capture how a graph model changes in an
evolution. In addition to conventional graph patterns matched against the current
snapshot, a change pattern should also contain constructs for expressing the
difference between two graphs, in the form of change queries. An appearance query
indicates a graph pattern with a new match in the post-state, while the disappearance
query indicates that a match of a given graph pattern is invalidated by the change.

When matching change patterns, the key idea is to simultaneously match them against
a pair of graph models, called the pre-state (before state) and the post-state (after
state). Appearance queries are graph patterns whose matches have appeared in the
post-state, but were not present in the pre-state; and disappearance queries are
patterns whose match has disappeared.

In some scenarios, the appropriate reaction to a change does not only depend on the
after state, but also on the net change (or equivalently, the before state). The true
strength of Graph Change Patterns is the ability to distinguish cases where the current
(after) state is the same, but it was reached through different cases, from different
before states. As the pattern variables are mapped to the locality of the change, a
match of the Graph Change Pattern also pinpoints where the reaction should be
applied.

The intention behind our formalism is that a change pattern should match regardless of
the order of elementary model manipulations that ultimately satisfied the appearance /
disappearance / update queries, it is therefore irrelevant what the last operation was
that e.g. completed the pattern of the appearance query. As a result, a single change
pattern compactly captures a large set of different change sequences.

Definition 8 (Graph Change Pattern) Graph Change Patterns (GCP) can be

defined as a tuple GCP=〈PN,P+*,P-*〉, where

• PN=〈P,N*〉 is the main graph pattern with the positive pattern P and

negative application conditions N*.

• P+* is a set of graph patterns {Pi = 〈Vi,Ci〉} called appearance queries. , Each

appearance query Pi=〈Vi,Ci〉 represents that a certain graph pattern appears

due to the change. Pi is allowed to share variables with P.

• P-* is a set of graph patterns {Pj = 〈Vj,Cj〉} called disappearance queries. ,

Each disappearance query Pj=〈Vj,Cj〉 represents that a certain graph pattern

disappears due to the change. Pj is allowed to share variables with P.

• Appearance and disappearance queries altogether are called change

queries.

• The set of common variables of a change query and the main pattern is

called its interface. , and the set of common variables is their interface.

Ii=Vi∩V(P) and Ij=Vj∩V(P).

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 59/137

• The pre-state pattern Ppre(CP) = (∪Pj∈P-*Pj)∪P summarizes disappearance

queries and the main positive pattern, i.e. all patterns representing

existence in the pre-state..

• The post-state pattern Ppost(CP) = (∪Pi∈P+*Pi)∪P summarizes appearance

queries and the main positive pattern, i.e. all patterns representing

existence in the post-state..

GCPs are matched against a pair of graphs Gpre and Gpost, such that Gpost is derived
from Gpre by model manipulation. Thus the sets of model entities (Entpre and Entpost) and
relations (Relpre and Relpost) may intersect on elements that were preserved by the step
from Gpre to Gpost..

Definition 9 (Match of Graph Change Pattern) A match of the Graph Change

Pattern GCP=〈PN,P+*,P-*〉 in 〈Gpre;Gpost〉 is the mapping m=〈mP,m+*,m-*〉:

GCP→〈Gpre;Gpost〉, where

• mP: PN→ Gpost is a match of PN, in the post-state Gpost.

• For each Pi in P+* the set m+* contains a mapping mi:Pi→Gpost such that

o mi is a match of graph pattern Pi in graph Gpost,

o mi(v) = mP(v) for interface variables v ∈ Ii, i.e. mi interfaces with the

match of the main pattern, and

o the same mi is not a match of graph pattern Pi in the pre-state Gpre.

• For each Pj in P+* the set m+* contains a mapping mj:Pj→Gpre such that

o mj is a match of graph pattern Pj in graph Gpre,

o mj(v) = mP(v) for interface variables v ∈ Ij, i.e. mj interfaces with the

match of the main pattern, and

o the same mj is not a match of graph pattern Pj in the post-state Gpost.

Note that this definition is deliberately asymmetric for Gpre and Gpost, as the main
pattern PN is interpreted on Gpost only.

4.5.3 On computational complexity

Graph pattern matching can be a computationally intensive process. As it contains the
well-known problem of Subgraph Isomorphism, it is NP-hard. However, in most cases
the pattern will be of bounded (even small) size, while the model itself may grow big. It
is easy to see that with this assumption, the worst-case time complexity is the size of
the model to the power of the size of the pattern, therefore polynomial.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 60/137

Still, this step may take long. The whole point of incremental pattern matching (see
Section 4.2) is to avoid the time-consuming full re-computation of the match set after
each small modification. Assessing the execution time and space requirements of
incremental pattern matcher algorithms is a challenging task, having to take into
account pattern structure, graph model structure, match set sizes of patterns and sub-
patterns, the extent and consequences of change, etc. Some cost models of RETE, the
data structure used in the implementation, are available at [25] and [1].

Having incremental pattern matching available, computing the change sets after an
evolution from Gpre to Gpost, i.e. the set of new pattern matches and the set of
invalidated pattern matches, is a trivial task. GCPs can be thought of as a construct
very similar to graph patterns on the union of the post-state (main graph pattern) and
the change sets (change queries). Therefore evaluating GCPs has similar complexity
characteristics as plain graph patterns.

4.5.4 Rule Formalism

Harnessing the strength of GCPs, a powerful rule-based automation formalism can be
defined. Without going into details of how the reactions themselves are defined, such a
rule can be characterised by a guard that is a GCP; after a change to the model, the
actions associated with the rule are executed for each match of the guard. In
publications by the authors in the field of model transformation (e.g. [6]), such a rule
was referred to as Change-driven Rule (CDR).
Relying on technologies developed for model transformation purposes (incremental
pattern matching), GCP can be detected efficiently. Consequently, a rule-based system
specified by CDRs can be executed in an efficient way.

In the context of Security Engineering, the Evolution Rules envisioned in Section 7.1
can be immediately formalized as CDRs, lending both efficiency and expressivity to the
approach. The Condition part of the Evolution Rule expresses constraints on the
current (after) state, therefore it is formalized the PN part of the CDR. The appearance
and disappearance Events are formalized as change queries in P+* and P-*,
respectively. Finally, the Action is associated with the CDR (which was not formally
defined in Section 7.4.2)

4.6 Examples of evolution rules
We now demonstrate the power of the language by showing how a certain issue that
arises in evolving requirements models can be addressed by evolution rules.

In an evolving requirements model, new actors may be introduced, delegation and trust
relationships may be changed, all raising security concerns. When an actor is taking
over the responsibility (delegation) of a security goal previously achieved by a different
actor, a problematic situation may arise if other actors do not have trust in the new
setup. The same hold for delegating other entities (e.g. assets) instead of goals.
Basically, intervention is required in situations when an actor delegates some
responsibility (e.g. a security goal) to another actor, but does not trust the other one
with the same object.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 61/137

The appropriate reaction can range from logging the event, raising a warning or
initiating an argumentation that will be finished by security engineers, to automatic
intervention like creating the missing trust relationship, depending on policy. The
reaction might depend on how such an undesired state of the model was produced.

To illustrate the capabilities of the evolution rule formalism, we first design a graph
pattern to express the undesired configuration, and then we draft three alternative
solutions with evolution rules to intervene in these situations.

4.6.1 Graph pattern for expressing the problem

Figure 22 visually depicts the graph pattern (with a negative condition) that
characterizes this undesired configuration of elements.

In a match of the pattern, the (positive) pattern variables Act1, Act2, Obj, Del will be
mapped to entities in the model. Act1 will be substituted for an entity of type Actor that
delegates the responsibility of an entity Obj to the actor Act2 using the delegation
relationship Del; where at the same time, there is no trust relationship Tru such that
Act1 trusts Act2 over Obj.

Figure 22 The undesired pattern: untrusted delegati on

4.6.2 Solution 1: one rule per elementary change

The first solution would be to create several evolution rules, one for each possible
elementary change that can complete the pattern and make an intervention necessary.
In this case, two kinds of elementary changes can trigger the rule: the detection of a
newly added “delegation” relationship between two actors (and the dependum), or the
deletion of an actor-actor trust (over a dependum).

Both changes can be captured by the Event part of a separate evolution rule
(appearance event in the former case, disappearance in the latter). The condition part
is required to determine whether the change actually completes the pattern: when a
delegation appears, the non-existence of a trust with the same dependum will have to
be checked; when a trust disappears, the existence of the delegation with the same
dependum will have to be checked. The Action creates an argument prototype (i.e. a
placeholder), connected to the violated security goal, to discuss the problem.
Engineers will have to manually finish the argument with domain-specific knowledge, or
fix the problem. Additionally, the Action contains a simple logging statement; observe
how the two different cases can be handled differently. The following pseudo code
listing describes these two evolution rules; syntax is not final.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 62/137

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation1 {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP);

 eventeventeventevent ==== appearappearappearappear {

 entityentityentityentity Actor(Act1);

 relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);

 entityentityentityentity Actor(Act2);

 Actor.delegates.dependum(Del—DD->Obj);

 entityentityentityentity Object(Obj);

 }

 conditionconditionconditioncondition {

 nononono (Tru, TD) such that {such that {such that {such that {

 relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2);

 relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);

 }

 }

 actionactionactionaction {

 loglogloglog “Delegation created without supporting trust: $Act1-$Obj-$Act2”;

 create ecreate ecreate ecreate entityntityntityntity Argument(Arg);

 create rcreate rcreate rcreate relationelationelationelation Argument.supports(Arg—AP->Obj);

 }

}

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation2 {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP);

 eventeventeventevent ==== disappeardisappeardisappeardisappear {

 entityentityentityentity Actor(Act1);

 relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2);

 entityentityentityentity Actor(Act2);

 relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);

 entityentityentityentity Object(Obj);

 }

 conditionconditionconditioncondition {

 relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);

 relationrelationrelationrelation Actor.delegates.dependum(Del—DD->Obj);

 }

 actionactionactionaction {

 loglogloglog “Removal of trust threatens delegation: $Act1-$Obj-$Act2”;

 create ecreate ecreate ecreate entityntityntityntity Argument(Arg);

 create rcreate rcreate rcreate relationelationelationelation Argument.supports(Arg—AP->Obj);

 }

}

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 63/137

4.6.3 Solution 2: single coarse-grained rule

The change query formalism introduced in this chapter allows the detection of changes
that are defined by multiple predicates. This results in the capability of change queries
to observe the appearance (or disappearance) of a complex pattern, regardless what
the last elementary change was that completed the pattern.

In this case, the entire undesirable pattern can be captured in an appearance event of
a single evolution rule; whenever the undesired pattern appears, the evolution rule will
fire, independently of the order of operations that eventually resulted in the appearance
of the pattern. This enables us to formulate the solution much more concisely; in this
simple example, even the Condition part could be discarded.
evolution evolution evolution evolution rulerulerulerule UntrustedDelegation {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP);

 eventeventeventevent ==== appearappearappearappear {

 entityentityentityentity Actor(Act1);

 relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);

 entityentityentityentity Actor(Act2);

 Actor.delegates.dependum(Del—DD->Obj);

 entityentityentityentity Object(Obj);

 nononono (Tru, TD) such that {such that {such that {such that {

 relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2);

 relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);

 }

 }

 conditionconditionconditioncondition {}

 actionactionactionaction {

 loglogloglog “Untrusted delegation: $Act1-$Obj-$Act2”;

 create ecreate ecreate ecreate entityntityntityntity Argument(Arg);

 create rcreate rcreate rcreate relationelationelationelation Argument.supports(Arg—AP->Obj);

 }

}

This kind of concise solution is much quicker to develop and understand. Development
also becomes less error-prone, as the rule designer does not have to manually take
care of all possible elementary changes that can result in the appearance of the
complex pattern; the previous solution would have been insufficient if the rule
UntrustedDelegation2 had been accidentally omitted. The disadvantage is that the
same Action part is executed regardless of the last elementary change that triggered
the rule; if some cases do require special action, than more evolution rules should be
used with an event granularity that is just enough to distinguish the relevant cases.

4.6.4 Solution 3: automatic problem correction

Apart from logging the detection of the pattern and reusing an argumentation, evolution
rules can also correct problems present in the model. The difficulty of this approach is

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 64/137

that often there is more than one way to remedy an issue, and the decision is hard to
automate. For instance, the problem in this example can be solved by adding a missing
trust relationship; or by removing the delegation (and probably implementing something
else in its place). Both are valid ways to handle the issue, but engineers should select
manually which one should be applied in each concrete case. To achieve this, we
introduce two alternate evolution rules that implement these two reactions. Together
with the rule UntrustedDelegation of Solution 2 introduced in Section 4.6.3, they
provide three options that can be automatically offered to the engineers to choose
from.

Note that the three rules can reuse each other’s Event parts for more concise
specification. Once again, the syntax is not final.
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_AddTrust {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj);

 event =event =event =event = UntrustedDelegation.event

 conditionconditionconditioncondition {}

 actionactionactionaction {

 loglogloglog “Resolving untrusted delegation ($Act1-$Obj-$Act2) by adding
missing trust link”;

 create relationcreate relationcreate relationcreate relation Actor.trusts(Act1—Tru->Act2);

 create relationcreate relationcreate relationcreate relation Actor.trusts.dependum(Tru—TD->Obj);

 }

}

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_RemoveDelegation {

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj);

 event =event =event =event = UntrustedDelegation.event

 conditionconditionconditioncondition {}

 actionactionactionaction {

 loglogloglog “Removing untrusted delegation: ($Act1-$Obj-$Act2)”;

 delete relationdelete relationdelete relationdelete relation DD;

 delete relationdelete relationdelete relationdelete relation Del;

 }

}

Where applicable, evolution rules can directly manipulate the model to automate the
solution of common problems. Some of the change patterns introduced in D2.1 can be
considered as possible candidates for being automated with evolution rules.

4.6.5 Discussion

None of the above rules deal with the disappearance of the undesired pattern.
Depending on policy, additional rules may have to be defined to react to security
problems being solved, as the actions of the other evolution rule (e.g. placing a
warning marker or creating an argumentation placeholder) may have to be undone or
compensated.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 65/137

The example presented in this section shows how the goals in Section 7.1 can be
satisfied using the proposed formalism for evolution rules:

• the untrusted delegation was captured as a complex structural property

• a change event detecting the change of this complex property was defined

• the formalism is general enough to be refinable for domains or scenarios

• the rules can take appropriate domain-specific actions

• these reactions include user interaction (logging in this example) and the
modification of a model (creating the argument placeholder, creating, removing
the delegation)

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 66/137

5 Application of the Methodology

This section illustrates the different steps of the SecMER methodology based on the
process level change and the information protection property of the ATM case study.
The Process Level Change is about the introduction of the Arrival Manager (AMAN),
which is an aircraft arrival sequencing tool helping to manage and better organize the
air traffic flow in the approach phase. The introduction of the AMAN requires new
operational procedures and functions (as described in Deliverable D1.1) that are
supported by a new information management system for the whole ATM, an IP based
data transport network called System Wide Information Management (SWIM) that will
replace the current point to point communication systems with a ground/ground data
sharing network which connects all the principal actors involved in the Airports
Management and the Area Control Centers. The introduction of the AMAN and the
SWIM requires suitable security properties to be satisfied which prevent from
corruption, accidental or intentional loss of data and guarantee the integrity and
confidentiality of the aircraft sensible data against malicious attacks or intrusions.We
will focus on information access and information protection properties on the
requirements level. In particular, we will show how to achieve information access by
enforcing access control policies on Flight Data Domain (FDD) transmission and how
to ensure confidentiality of FDD data by using encryption.

5.1 Requirement Elicitation
The first step of our methodology consists of modeling the ATM system before the
introduction of the AMAN and the SWIM using the SecMER conceptual model. The
resulting requirement model is illustrated in Figure 23.

The main actors are the Sector Team at the destination airport composed by the
Planning and the Tactical Controller, the CWP, and the dedicated communication lines
(telephone, radio communications). The flight arrival management operations are
performed by the Sector Team (Tactical and Planning Controllers) that has to compute
the arrival sequence for the flights and give clearances for landing to the pilots flying in
their sector on the basis of the information displayed by the CWP such air traffic, radar
data, monitor displaying inbound/outbound traffic planned for the sector, telephone
switchboards, airlines and airport operators preferences or priorities about arrival
runways. Communications between different ATM actors take place over dedicated
and secure radio communications lines. The CWP and the Communication Lines want
the flight information to be protected by unauthorized access.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 67/137

Figure 23 The “before” requirements model

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 68/137

5.2 Requirement Evolution

Figure 24 The “after” requirements model

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 69/137

The introduction of AMAN and SWIM triggers a change request that requires the
requirement engineer to update the requirement model. The resulting model is
illustrated in Figure 24 where the new actors and goals are outlined in red. We have
three new actors the Sequence Manager, the AMAN and the SWIM. The Sequence
Manager is a new type of ATCO who will monitor and modify the sequences generated
by the AMAN and will provide information and updates to the Sector Team. The AMAN
main goal is to provide the arrival sequence by interacting with the FDP to get aircraft
positions that are necessary to compute the arrival sequence. The communication
between the different ATM actors is based on the SWIM, an IP based data transport
network which replaces the current point-to-point connections systems. The SWIM
actor has replaced the communication lines actor and it wants the security goal of
protecting the data flight information from unauthorized access (Figure 24).

5.3 Argumentation for security properties
The argumentation analysis for security goals usually consists of three types of steps.
Claims are to establish the satisfaction of the security goals using the facts and domain
knowledge rules available in an elicited requirements model. On the other hand, while
the requirements model evolves along with change in the world, additional facts and
domain knowledge rules may refute the argument for the satisfaction claims. Such
rebuttals must be handled properly, by revisiting the facts and domain knowledge rules
in the model, or by finding additional facts and domain knowledge rules for their
mitigations. These three steps can be applied to any state of the requirements model,
and they can interleave with the application of evolution rules in the iterative SeCMER
process.

Rebuttals . During the argumentation analysis, the “before” scenario was observed
insecure by the rebuttal that the changes introduced into the system could deny the
security goal. The newly acquired domain knowledge “A man-in-the-middle attack
happened to the communication lines could distort the data flight information”, which
violates the security goal of the SWIM actor: “the data flight information are protected
from unauthorized access”. This rebuttal is confirmed by the argumentation analysis,
which can be generalized into the following pattern “delegates information to an actor
through a shared communication process” and “the communication process may be
shared with actors not trusted”.

Mitigations . The next step during the argumentation analysis is to find mitigations to
the rebuttal. One type of mitigation is to reassess the risks associated with the facts
and domain knowledge raised by the rebuttals and reject a change when the risk is
low. However, this is not the case in the example. The risk of exposing the data link to
malicious attackers is high if no mechanisms are introduced to protect the secure
transmission of data flight information. Therefore, the change to the communication line
is proposed “to encrypt the data in transmission by the sender and decrypt it by the
receiver end”. The domain knowledge that “it is difficult for untrusted eavesdropper to
decrypt the data flight information” assures that the new system with the encryption is
secure. The generalization of the mitigation step can be stated as follows: “if the before
situation a delegates relation is untrusted and the communication is not encrypted, a
change is needed to introduce encryption as the solution”.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 70/137

Alternatives . In fact, the argumentation process can continue, with the rebuttals on the
previous mitigation suggests that the data encryption with poor strength key is still easy
to be decrypted by attackers armed with password dictionaries. As a mitigation step to
this, the maintained could introduce the change the “untrusted delegates relationship”
into “trusted delegates relationships”, and introduce an additional requirement on “the
delegatee actor shall be trusted” by using a key to access the lock in the control room.
A generalization of this mitigation is to add “obligatory actions” to the trusted delegatee
actors and to avoid using the communication links through untrusted channels.

Automation . Security goals often push the system boundary to enclose emergent
facts and domain knowledge, some argumentation analysis has to be carried out
interactively. On the other hand, conceptual model for argumentation makes it easier to
turn the three types of modelled arguments into predicate logic formula that are
checked using off-the-shelf reasoning tools [14].

In the next subsection, we introduce several evolution rules that formally combine the
events, conditions of the rebuttals and the actions of the mitigations.

5.4 Deriving and using Evolution Rules
In an evolving requirements model, new actors may be introduced, delegation and trust
relationships may be changed, all raising security concerns. The ATM evolution case
study is an example of this phenomenon: the new SWIM actor is introduced, taking
over the responsibility of secure communication, but other actors such as CWP not
necessarily trust it. This is exactly the problem that the step described in Section 4.6
addresses; in the following, we will demonstrate how such evolution rules can be
derived and applied in the concrete ATM example.

In the previous subsections, we have explained how an informal argument is
constructed, rebutted and mitigated on the elicited requirements models. In case the
argumentation turns out to be (partially) mechanic, we can enumerate Event-Condition-
Action evolution rules where events and conditions are obtained from the rebuttals, and
the actions obtained from the mitigations.

To come up with the events and conditions, we first represent a part of the complete
requirements model as a graph pattern. For example, when an actor delegates some
responsibility (e.g. the security goal of the CWP actor to protect the data
communication line from man-in-the-middle attack) to another actor (e.g., SWIM), but
does not trust the latter with the same object (e.g., the data communication link). The
graph pattern that characterizes the undesired configuration of elements was
previously shown in Figure 22. In context of the ATM example, Act1 can be the Actor
CWP, which delegates (through a delegation relation captured in variable Del) the Goal
Receive (matching the variable Obj) to Actor SWIM (which will be Act2); this variable
substitution is a match of the pattern as there is no trust relationship Tru between these
two actors over this goal in the model.

After assembling the graph pattern, the event and condition specifications will have to
be derived from it. We can create several evolution rules, one for each possible
elementary change that can complete the pattern and make an intervention necessary.
This will produce an outcome similar to Solution 1 presented in Section 4.6.2.
Alternatively, simpler and more concise rules can be used, similar to Solution 2 from

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 71/137

Section 4.6.3, if the mitigation only depends on the after state, and not on the nature of
the change itself.

Regardless of the chosen approach, the action part can alert the argumentation
engineers, or perform automated intervention by directly manipulating the model if the
mitigation is close to deterministic. See Solution 3 from 4.6.4 as an example. Some of
the change patterns introduced in D2.1 can be considered as possible candidates for
being automated with evolution rules.

The given solutions can be demonstrated by applying them on the example models
that represent the before/after situations in the ATM domain. Observing the After
situation more closely, one can notice that contrary to the old communication system,
the new SWIM system is not yet trusted by actors such as CWP and FDP. This may be
a security issue, as the goals Send and Receice are now delegated to SWIM, which
obviously requires trust. Fortunately, the example evolution rules presented in Section
7 can be used to automatically detect untrusted delegations. For example, if we use
the general evolution rules introduced earlier, they will be triggered for multiple
individual matches by this example evolution. The rule matches the rule variables to
actual substitutions that experienced the Event and satisfy the Condition. In one
concrete match, Obj will be mapped to the goal Send, and Act1 will be mapped to FDP;
in a second case, Obj will be the goal Receive and Act1 will be CWP; Act2 will be
mapped to SWIM in both cases. Engineers will be able to choose from three options for
each individual match: to fill in the missing trust link (this is the likely solution in our
case), to abolish the delegation, or to build an argumentation explaining why there is
no real problem.

5.5 Interaction of argumentation and evolution rule s
As discussed before, there are several ways for the evolution rules and the
argumentation process to interact. It is expected that the engineers responsible for the
argumentation can define domain-specific evolution rules that automatically maintain
some information related to the arguments in the model. In an ideal scenario, such
automation could always identify which arguments should be manually revisited, and
which are unaffected by a change in the requirements model. Of course in most cases,
there is no need to revisit each argument; if the set of rules for flagging arguments is
comprehensive, relying on this automated process can save manual effort.

In this ATM example, an event that can trigger an automated response in relation to an
argument can be the introduction of an attacker with an anti-goal against the “Prevent
Unauthorized Access” goal of SWIM. In this case, the argument in support of the
security goal should be flagged for manual re-evaluation. We show how argumentation
experts using the evolution rule language of SeCMER can define such a rule:
evolution ruleevolution ruleevolution ruleevolution rule AttackerInvalidates {

 variablesvariablesvariablesvariables = (Atk, AG, SecG, Arg, W1, D1, S1);

 eventeventeventevent ==== appearappearappearappear {

 entityentityentityentity Attacker(Atk);

 relationrelationrelationrelation Actor.wants(Atk–W1�AG);

 entityentityentityentity AntiGoal(AG);

 relationrelationrelationrelation AntiGoal.denies(AG-D1�SecG);

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 72/137

 entityentityentityentity SecurityGoal(SecG);

 }

 conditionconditionconditioncondition {

 entityentityentityentity Argument(Arg);

 relationrelationrelationrelation Argument.supports(Arg-S1�SecG);

 entityentityentityentity SecurityGoal(SecG);

 }

 actionactionactionaction {

 // flag argument as potentially invalid, notify argumentation team

 }

}

Here is one example of iterative development of the argument triggered by the
evolution rule. Typically such development is in the form of a dialogue. The first round
of an informal argument might be:

Initial claim:

• The ATM system remains secure after introducing AMAN (C1).

Initial facts:

• The AMAN system is controlled by a new trustable operator called Sequence
Manager (F1).

• Sequence Manager reports to Sector Team about sequences (F2).

• AMAN interacts with the FDP, CNS, and Meteo services to collect the Airport
Operators priorities, the Airlines priorities, the Meteo condition, and the aircraft
position (F3).

• The actors are interconnected by the SWIM (F4).

Initial domain knowledge rule :
• If the members of the Sector Team obtain important information about the

aircraft, information related to the aircraft position, for instance, the information
may become available to a potential attacker. (DK1)

Initial Rebuttals:
• The Sequence Manager can have malicious intent due to social and

psychological reasons (R1 on F1).
• Members of the Sector Team obtain critical information not related to their tasks

(R2 on F4).
• Attackers eavesdrop on the SWIM network.

Second round, one checks the R1 as a claim. Here is the supporting evidence for R1:

• Each Sequence Manager has been through clearance to minimize the risk of
being malicious F3=R1.1).

• Role-based access control policies for Sector Team will stop members of the
team accessing critical information not relevant to their tasks (F4=R1.2).

Such argumentation can go on until all the facts and domain knowledge rules are
refined so that all rebuttals of the root claim are not satisfiable. In other words, a

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 73/137

satisfaction claim is justified as long as all the facts and domain knowledge are true
(e.g., trust assumptions in arguing security goals) and all the rebuttals are false. A
formal treatment of argumentation using non-monotonic proposition logic can be found
in [14]. As one can see, the result of such argumentations would inevitably contribute
to changes in the situations of security goals.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 74/137

6 Integration with other approaches in
SecureChange

The SecureChange project is developing a methodology for engineering of secure,
long-lived and evolvable systems. Methods and techniques that have been developed
in individual work packages are various parts of the methodology. This section
discusses how requirements methodology of WP3 integrates with process and
architecture methodology of WP2, the design methodology of WP4, and risk
assessment methodology of WP5.

The integration is shown both at a conceptual level and at a process level. The
conceptual level integration shows how concepts from the requirements methodology
relate to those in other methodologies. At the process level the integration shows how
the flow of the process across the boundary of work packages. We illustrate and
exemplify the integrated the integration based on the Organizational Level Change
Requirement in the ATM case study and the Specification Evolution Change
Requirement of the POPS case study.

6.1 Integration of Requirements Engineering with
the Overall Process and Architecture

In this section, we describe the integration of SeCMER with the Overall Process model,
described in WP2, through the artefacts and process. The purpose of the Overall
Process model is to describe the abstract development process that can be
instantiated by various specific methodologies of the SecureChange project, including
the requirements engineering methodology. The purpose of requirements engineering
methodology is to describe and analyze the requirements for change, and specify the
security properties that need to be implemented in order to effect the change.
Therefore, the general relationship between the Overall Process model and the
requirements engineering methodology is that of abstract and concrete.

6.1.1 Artefact Integration

The SecureChange report D.2.2 has presented the integrated meta model (Figure
Figure 25) showing the artefacts of the SecureChange project and their
interdependencies. The artefacts are:

• Integrated Model
Integrated Model is an aggregated class comprising all other security
engineering artefacts. Instances of the class describe the system at all levels of
abstraction at a certain point of time. In Integrated Model may be in realised
state or planned state.

• System Model
The System Model comprises all information relevant in WP4 and WP6. In

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 75/137

particular the System Model both comprises the software architecture layer and
the code layer including security related information (e.g. formal models of
security protocols).

• Risk Model
The Risk Model comprises information related to WP5

• Requirements Model
The Requirements Model contains information related to this work package

• Test Model
The Test Model contains information related to WP7.

• ChangeRequest
The ChangeRequest class represents a complex change transaction of the
system at any level of abstraction, e.g. triggered by modified risks, requirements
or components in the System Model. Each change request is associated with a
an Integrated Model (=Integrated Meta Model instance) describing the state of
the system when initiating the change request (pre), and with arbitrary many
Integrated Model instances describing possible states after the change request
has been closed (post).
If the change request is in state closed, exactly one associated Integrated Model
instance has to be in state realised. The possible states of a change request are
described in detail in D2.2. Links between a change request and its post
Integrated Model may be attached with information how the post Model has
been constructed based on the pre Model. Two categories are supported and
explored within SecureChange: Change Patterns (WP2) and Change Rules
(WP3). Various concepts associated with the notion of change are discussed in
Section 7.

Figure 25 Integrated Meta Model

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 76/137

The SeCMER conceptual model of the evolving requirements discussed in Section 2.1
(reproduced in Figure 26) is a specialisation of the Requirement Model package of the
the Integrated Meta Model of D2.2, shown in Figure 25.

Figure 26 Security Requirements Conceptual Model (in relation to Integrated Meta Model)

In particular, the SeCMER conceptual model of security requirements defines a
requirement model in terms of concepts described in Figure 26. A detailed discussion
of those concepts is given in Section 2.

The Integrated Meta Model shows that there are three links from the Requirements
Model: to the Risk Model, System Model and the Test Model through the links
MMSyRe, MMRiRe and MMReTe. Sections 6.2, 6.3 and 6.4 below concretize those
links.

6.1.2 Process Integration

According to the Integrated SecureChange Process presented in D2.2., the evolution
of the system is determined by a sequence of change requests (for simplicity
overlapping change requests are not considered at the current stage). Each change
request causes one or several change events. These change events are handled by
the state machines of the model elements of the Integrated Model causing state
transitions and further events.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 77/137

Before discussing the state models, Figure 26 shows a sample change story. The
events in this sequence diagram are determined by an initial triggering change event
(change of the Risk Model) and subsequently by the state machines.

The change story exemplifies a change in the Risk Model (according to a user´s
change request) and subsequent actions, starting with a check of the risks, the
propagation of changes to the Requirements Model, the System Model and the Test
Model, a final check of the risks and propagation to the Requirements Model.

As a general remark change events in the Integrated Process are differentiated in
external change events (change) and internally propagated events (propagate), e.g.
the external change of the Risk Model (change) and the propagation of this change to
the Requirements Model (propagate). The handling of propagation should make use of
the respective mapping model in order to determine the affected part of the target
model of the change propagation.

Figure 27 Sample Change Story

The SeCMER methodology, recalled in Figure 28, is an instantiation of the messages
4:propagate and 5:checkRequirements in the change story. 4:propagate is the trigger

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 78/137

for the SeCMER methodology, and the processes Requirements Elicitation, Argument
Analysis and Requirement Evolution instantiate 5:checkRequirements. Results from
SeCMER can be propagated back to the SystemModel (6:propagate) through the
System Design artifact in SeCMER methodology. Similarly, the results from SeCMER
can also be propagated to the TestModel (7:propagate), through the incremental
security properties that need to be checked in SeCMER. When the requirements have
been implemented in SystemModel, the system is in the secure state, and the
SeCMER methodology is terminated.

Figure 28 Overview of SeCMER methodology

Change

Request
Requirements

Elicitation

System

Design

Requirements

& Change

Argument

Analysis

Requirements

Evolution

Evolution

Rules

Δ Security

Properties

Risk

Assessment

secure

after

change?

requirement

satisfiable?

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 79/137

Figure 29 State Diagram of Requirements Model

In the report D2.2, state diagram of the Requirements Model has been defined
(recalled in Figure 29). the various states of a requirements model are explained:

• defined: This state reflects that a requirements model has either been newly
created or that it is subject to a change which can either be external
(changeRequirements) or internal (propagate).

• waiting: This state reflects that the requirements analysis is currently on hold to
wait for the results of the risk analysis. That way we ensure that each change to
the requirements is always undergoing a risk analysis first.

• checking requirements: This state reflects that if the risk analysis is concluded or
changes are propagated internally to the requirements model the requirements
model is checked and analyzed. The result of checkRequirements can either be a
failure in which case the state is changed back to defined of if it is ok, the
changes are further propagated to the system and test model.

• pending requirements: The requirements model remains in this state until the
implementation is concluded and the system model fires the trigger
requirements implemented.

• complete: This is the target state of the requirements model. It outlines that the
requirements have been implemented.

Again, the development process is in the checking requirements state when the
SeCMER process is being executed, in the pending requirements state when the
changes specified in the incremental security properties are being implemented, and in
the complete state when the SeCMER methodology is exited.

6.2 Integration of Requirements Engineering and
Risk Assessment

The SecureChange process aims at developing an overall approach to the engineering
of secure, long-lived and evolvable systems. Methods and techniques for requirements
engineering is one of the cornerstones from the overall approach. In the wider setting
of security engineering of changing and evolving systems, the requirements
engineering constitutes one part of the overall process.

In this section, we describe the integration between the SeCMER methodology and risk
assessment methodology proposed in WP5. The purpose of the risk assessment is to
understand the potential security risks that may arise, possibly due to some
requirement changes, and to identify treatments for unacceptable risks so as to ensure
and maintain an acceptable level of security. The results of a risk assessment (i.e.,
new treatments) may yield new security requirements that should be included in the
requirement model. Moreover, the requirements changes may involve new assets that
should be taken into account their risk levels. Therefore, a well-defined process that
integrates the two methodologies is required to fully and properly understand both the
requirements and the risks.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 80/137

Moreover, in the setting of changing and evolving systems, there is a need to
understand not only how the changes may affect security requirements on the one
hand and security risks on the other hand; we also need to understand how changes to
requirements and risks affect each other, and how the propagation of changes from the
one to the other should be dealt with in a systematic way.

We address the problem both at a conceptual level and at a process level. At the
conceptual level we present an integration of concepts and explain how requirement
model artifacts should be mapped to risk model artifacts and vice versa. At the process
level, we utilize the conceptual level integration and explain how the conceptual
integration comes into play in the integration of the respective methodologies.

We illustrate and exemplify the integrated process based on the Organizational Level
Change Requirement in the ATM case study. Notice that the risk assessment
examples are based on the CORAS instantiation of the method for risk assessment of
changing systems as presented in the appendix of deliverable D5.3.

6.2.1 Conceptual Integration

As standalone methods, both requirements engineering and risk assessment may
adopt techniques, artifacts and concepts from each other’s domain. Requirements
analyses may, for example, take into account threats and vulnerabilities, and risk
assessments may include requirements identification as a separate task. For the
purpose of understanding and describing the potentials for integration of the separate
methods, we assume a separation of concern. This means that all risk specific
concepts belong to the risk domain, and all requirement specific concepts belong to the
requirement domain. The separation of concern assumption ensures that we can
identify exactly the actual interface between the domains.

In the following we first separately present the core and basic concepts of requirements
engineering and risk assessment. Thereafter we present the conceptual level
integration.

6.2.1.1 Requirement Concepts

The UML class diagram of Figure 30 gives an overview of the basic concepts of
requirements engineering and the relations between them. We refer to Section 2.1 for
a detailed presentation of the conceptual model. In the following we give the definitions
of the concepts.

• Action: An entity performed by an actor, which can generate events, and can
have preconditions and post‐conditions

• Actor: An entity that can act and intend to want or desire

• Asset: an entity of value that can be owned and used

• Goal: A proposition an actor wants to make true

• Proposition: A statement that can be true or false

• Resource: an entity without intention or behavior

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 81/137

• Security goal: A proposition that specifies how to prevent harm to an asset
through the violation of confidentiality, integrity, and availability security
properties

• Situation: partial state of the world described by a proposition

Figure 30 Basic requirements concepts

6.2.1.2 Risk Concepts

The UML class diagram of Figure 31 gives an overview of the basic concepts of risk
assessment and the relations between them. We refer to deliverable D5.3 for a more
detailed presentation of the underlying concepts of risk assessment. In the following we
give the definitions of the concepts.

Figure 31 Basic risk concepts

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 82/137

• Asset: Something to which a party assigns value and hence for which the party
requires protection.

• Consequence: The impact of an unwanted incident on an asset in terms of
harm or reduced asset value.

• Likelihood: The frequency or probability of something to occur.

• Party: Stakeholder; an organization, company, person, group or other body on
whose behalf a risk analysis is conducted.

• Risk: The likelihood of an unwanted incident and its consequence for a specific
asset.

• Threat: A potential cause of an unwanted incident.

• Threat scenario: A chain or series of events that is initiated by a threat and
that may lead to an unwanted incident.

• Treatment: An appropriate measure to reduce risk level.

• Unwanted incident: An event that harms or reduces the value of an asset.

• Vulnerability: A weakness, flaw or deficiency that opens for, or may be
exploited by, a threat to cause harm to or reduce the value of an asset.

6.2.1.3 Integration

In the conceptual integration we distinguish between what we refer to as shared
elements on the one hand and mappable elements on the other hand. The shared
elements are concepts that are common to requirements engineering and risk
assessment, with the same semantics in both domains. The mappable elements are
concepts from one domain that are not shared by the other, but are nevertheless
related to the other domain and can be mapped to concepts of the other domain.

The shared elements are at the core of the integration, and the fact that they are
shared means that if a change occurs such that a shared element is affected in one
domain, it will inevitably affect the same element in the other domain. Considering the
conceptual framework of the two domains, we identify one shared element, namely the
asset . In both domains, an asset is something of value for a stakeholder. A main
objective of requirements engineering is to elicit requirements where they are assured
to be achievable securely at runtime, while a main objective of risk assessment is to
identify risks with respect to the assets and to identify treatment options for mitigating
excessive risks.

The overall objective of the two domains is protecting assets, by maintaining an
acceptable level of security/risk to artifacts relevant to some requirements, requires us
to identify mappable elements. In the risk assessment domain, a treatment is a process
that will reduce the level of risks. In the requirement engineering domain, this
corresponds to security goal and action; a security goal specifies what to prevent from
the assets, and an action specifies how to fulfill the security goal. An important principle
of the conceptual integration is not all concepts in each domain are shared or
mappable. Therefore, changes on the element that is not part of the conceptual
integration shall have no effect on the other domain.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 83/137

There are, however, certain artifacts that nevertheless may serve as additional
information to the other domain in the sense of explaining or providing the rationale for
other elements. Changes to such artifacts in one domain should not have effect on the
other domain, other than the effects that are captured via the shared and mappable
elements.

In the integration between requirements engineering and risk assessment, we include
the achievement matrix and the risk matrix, respectively, as such explanatory
elements. The achievement matrix is produced as a result of a requirements analysis,
and specifies the continuity and the achievement level for each requirement. The risk
matrix is used both in the input to and in the output from a risk assessment. As input,
the risk matrix is used to define the risk evaluation criteria for each asset and the
specification of acceptable risks. As output, the risk matrix is used to evaluate the
identified risks and to document the changes of risk levels due to changes to the target
system, including the implementation of treatments. Note that acceptable risks do not
always lead to a “sufficient” level of the achievement matrix in the requirement model.
For instance, there might be a situation where all risks are treated, but some
requirements cannot be fulfilled because the organization lacks of required capabilities.

An overview of the conceptual integration is given in Table 3.

Requirement concept Risk concept Kind of integration

Asset Asset Shared concept

Security goal Treatment Risk concept mapped to

requirement concepts
Action

Achievement matrix Risk matrix Risk concept mapped to

requirement

Table 3 Conceptual integration of requirement and r isk modeling

6.2.2 Integrated Process

In this section we present various options for integrating the respective processes of
requirements engineering and risk assessment. The two processes should still be
understood as separate processes with their own iterations, activities and techniques
for managing change. The integrated process explains at which steps of the respective
processes that the conceptual level interface can or should be invoked. The integrated
process is hence based on the conceptual integration presented in the previous
section.

The integrated process presented here can be understood as an instantiation of the
more general and project wide integration presented in deliverable D2.2. In this section
we present a more detailed integration, however maintaining the consistency with the
more high-level integration of D2.2.

The integration of the requirements engineering process and the risk assessment
process is based on the principle that the respective domains are oblivious to the
elements of the other domain that are not part of the conceptual integration. This

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 84/137

means that whenever data is processed, model elements are modified, analyses are
conducted, etc. in one domain, and these activities do not affect the elements of the
conceptual integration, there is no need to interact with the other domain.

For example, if the requirement engineers keep modifying and remolding satisfaction
arguments for achieving functional goals while there are no changes to the assets,
there is no need to invoke the risk assessment process. And if the risk analysts modify
the risk models by including new threats and adjusting likelihood estimates, and these
modifications have no effect on the treatments, there is no need to invoke the
requirement engineering process.

6.2.2.1 Overview of Process

The UML activity diagram of Figure 32 gives a high-level overview of the integrated
process. The diagram is divided into three partitions to distinguish between the
activities and objects under the control of the user, the risk analyst and the requirement
engineer. The user is typically the client commissioning the analyses, and may, for
example, be the owner of the system that is the target of analysis.

The integrated process is defined such that the risk assessment process and the
requirements engineering process are conducted separately. Depending on the
change request and the analysis needs, the respective processes may optionally
invoke each other at different stages of the overall process. In the diagram, the
diamonds specifies branching of the sequence of activities. When there is no guard
condition on the branching (specified by the notes with Boolean expressions), the
process proceed along one or both of the branches. This gives a wide flexibility on how
the overall process may be conducted. Some of the potential scenarios that are
described by the diagram are the following:

• A change transaction is planned, and the user makes a change request that is
passed to the risk analyst who is asked to update a previous risk assessment.
The risk analyst uses the previous risk model (RiM before) and the change
request as input to the risk assessment. As a result of the risk assessment, the
risk analyst passes treatment options for unacceptable risks back to the user,
and the process ends.

• A change transaction is planned, and the user makes a change request that is
passed to the requirement engineer who is asked to update a previous
requirements analysis. The requirement engineer uses the previous
requirement model (ReM before) and the change request as input, and updates
the ReM. Based on the updated ReM, a requirements analysis is conducted.
The results are passed back to the user, and the process ends.

• The scenario is initiated as one of the previous ones, but during the process the
risk analyst and the requirement engineer interact by invoking each other
without going through the user. For example, the requirement analysts identify
new assets that are passed to risk assessment, and the risk analysts report
back by passing relevant treatments to the requirement engineer who updates
the ReM accordingly before the requirements analysis is conducted.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 85/137

Figure 32 Overview of integrated process

We can think of the integrated process as interactions that are triggered by an external
event, namely the change request from the user. When this change request is passed
to one or both of the risk analyst and requirement engineer, there are a number
iterations where the changes propagate back and forth between the two until a stable
state (equilibrium) is reached and the results can be passed back to the user.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 86/137

As seen from the diagram, it is the user that initiates and terminates the overall activity.
For long-lived, evolving systems there may be many iterations of the overall integrated
process, each of them triggered at different points in time. In the following we focus on
a single iteration of the overall process (which of course may consist of several internal
iterations without the user), explaining in more detail the integrated process.

In the description of the integrated process, we assume that the risk analyst and the
requirement engineer share a common representation and description of the target of
analysis before the changes. Such a description may, for example, be a set of UML
diagrams as exemplified by the documentation of the ATM target of analysis in the
appendix of deliverable D5.3. Once the user has passed on the description of the
change request, the interactions between the risk analyst and the requirement
engineer in the integrated process is then conducted without consulting the user or
other stakeholders/externals.

In explaining the integrated process, we begin with the requirement engineer partition.
The requirement engineer uses the previous requirement model (ReM before) and the
change request to update the requirements model, producing ReM after. Based on the
ReM after, new assets are extracted if relevant. At this point, the requirement engineer
may invoke the risk assessment in order to have the risk analyst to identify related risks
and pass back relevant treatments that should be taken into account in the
requirements analysis.

Receiving the extracted assets, the risk analyst use this input as a kind of change
request and combines it with the previous risk model (RiM before) to conduct a new
risk assessment. The risk assessment includes the identification of risks regarding the
new assets, as well as the estimation and evaluation of these risks. For the
unacceptable risks, a treatment identification is conducted. Without consulting the user,
the risk analyst passes a specification of treatment options back to the requirement
engineer who now proceeds.

Using the treatments as input, the requirement engineer specifies corresponding
security goals and actions to fulfill these. This yields a new update of the ReM, which
serves as the basis for the requirements analysis.

The requirement analysis must determine whether the achievement of the specified
goals is acceptable. If it is acceptable, the requirement engineering process concludes
and reports back to the user. If it is not acceptable, the requirement engineer must
identify the problem.

If there is a problem with the treatments, for example that some of the corresponding
security goals cannot be fulfilled, the risk assessment is invoked with a request for
alternative options for treatments. The risk analyst passes new treatments back, after
which the requirement engineer makes a new update of the ReM and conducts a
second requirement analysis. If there is a problem with the ReM, the requirement
analyst must backtrack and search for an alternative way of updating the ReM when
considering the change request that was initially passed from the user.

6.2.2.2 Detailing the Process with the Rationales

The most basic form of the interactions between the risk assessment process and the
requirement analysis process is by the passing of assets from the latter to the former,
and the passing of treatments from the former to the latter. In some cases this will

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 87/137

suffice for the respective processes to proceed with their respective activities. In other
cases there is a need to include also the rationales for the artifacts that are exchanged.

For example, when only a set of treatments is passed from the risk analyst to the
requirement engineer, this may not suffice for the requirement engineer to determine
how to most adequately update the requirement model, or to determine which
treatments to select. The risk analyst can then specify for each treatment the set of
assets for which the treatment provides protection. If even further rationales are
required, the risk analyst can provide for each pair of treatment and asset the risk
evaluation matrix where the estimated reduction of risk levels by implementing the
treatment is documented. The risk matrix shows the reduction of risk level by depicting
the reduction of likelihood and/or consequence, and also shows whether the levels of
the risks are acceptable.

Conversely, it may not be sufficient for the risk analyst to know the new assets alone.
In order to determine the severity of identified risks, the risk analyst may need to know
the priorities of the assets. For this purpose the requirement engineer can provide the
achievement matrix for the goals, where the achievement matrix shows for each
combination of continuity level and achievement level whether the combination is
acceptable or not.

6.2.2.3 External Integration

As mentioned above, the integrated process described in this section can be
understood as a more detailed instantiation of the integration of risk assessment and
requirement engineering that is presented in deliverable D2.2. Whereas deliverable
D2.2 explains the wider integration of design, testing, verification, risk assessment and
requirements engineering, we focus here on the latter two.

The UML sequence diagram of Figure 33 is adopted from D2.2 and shows a sample
change story that illustrates the global integration. The change story is initiated by a
change request from the user, and the subsequent interaction exemplifies how the
change may propagate. We refer to D2.2 for a more detailed explanation.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 88/137

Figure 33 Simple change story

Comparing this sample of the global integration with the integrated process presented
in this section, we see that the sample change story is supported by the latter. The
main difference is that the integrated process described in this section is more detailed
and supports a wider set of interactions.

In the global setting we can conceive the integration of the risk assessment and
requirements engineering as representing one artifact. Expressing this in the sequence
diagram, we can compose the lifelines Risk Model and Requirements Model, thus
representing the other artifacts, i.e. the other lifelines, as external to this local
integrated process. This composition is illustrated by the sequence diagram of Figure
34 with the lifeline RiM&ReM.

In this diagram we have purposely hidden the internal messages of the RiM&ReM
lifeline to convey that the internal interactions can be any of those that are supported
by the integrated process as described by the activity diagram of Figure 32.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 89/137

Figure 34 Integrated process in the global setting

In this global setting, we can understand the interaction with the other artifacts as an
instantiation of the global integration. From the global perspective, the initial change
request triggers a sequence of activities, possibly with several iterations, that should
result in a stable state (global equilibrium). From the local perspective of the
RiM&ReM, any input from the other lifelines are external input that triggers an internal
sequence of activities that should result in a local equilibrium before the results are
propagated externally. During the global process that continues towards global
equilibrium, it may be that the RiM&ReM integrated process is invoked anew. In that
case, the integrated process should again reach a local equilibrium before the global
process continues.

6.2.3 Application to ATM Case Study

In the following we illustrate and exemplify some of the steps of the integrated process
of risk assessment and requirements engineering. We address the Air Traffic
Management (ATM) case study, and particularly the change requirement of
Organizational Level Change.

6.2.3.1 Change Requirement and Security Properties

The Organizational Level Change introduces changes both at process and at
organizational level. At organizational level, the AMAN supports the Sector Team by
providing sequencing and metering capabilities for a runway, airport or constraint point,
the creation of an arrival sequence using ‘ad hoc’ criteria, the management and
modification of the proposed sequence, the support of runway allocation at airports
with multiple runway configurations, and the generation of advisories for example on
the time to lose or gain, or on the aircraft speed. The Sector Team consists of two Air
Traffic Controllers (ATCOs), namely the Tactical Controller (TCC) and the Planner

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 90/137

Controller (PLC). The Sector Team is responsible for managing the air traffic of an
allocated sector of the airspace.

The introduction of the AMAN requires the addition of a new type of ATCO, called
Sequence Manager (SQM), who will monitor and modify the sequences generated by
the AMAN and will provide information and updates to the Sector Team. The SQM
replaces the ATCO role of Coordinator (COO) before the Organization Level Change.

In addition to the introduction of the AMAN, we consider the adoption of the Automatic
Dependent Surveillance Broadcasting (ADS-B) which is a GPS-based system for
determining aircraft positions.

The security properties we consider are Information Protection and Information
Provision. For the purpose of keeping the example simple, we restrict Information
Protection to the confidentiality of ADS-B data, and we restrict Information Provision to
the availability of arrival sequences. In the example, we often refer to these simply as
confidentiality and availability, respectively. As the ADS-B is introduced as part of the
changes, we address only the availability property before the changes. We address
both availability and confidentiality after the changes.

For more detailed descriptions of the target of analysis and the changes, we refer to
D1.1 and to the appendix of D5.3.

6.2.3.2 Requirement and Risk Modelling before Chang e

We assume that the requirement model for the ATM system before the introduction of
AMAN is the one illustrated in Figure 35. The model consists of four main actors,
namely the TCC, the PLC, the Radar and the Flight Data Processing System (FDPS).
The asset in the requirement model is the availability of the arrival sequence manually
computed by the PLC.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 91/137

Figure 35 Requirement Model before the introduction of the AMAN

On the risk assessment side, the risk analyst has previously conducted and
documented a risk assessment before the changes. The threat diagram of Figure 36
shows a sample of the documentation of the risks that were identified.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 92/137

Figure 36 Risk Model before the introduction of the AMAN

The threat diagrams documenting the risks before the changes address the availability
asset, as this is the only asset that is considered at this point. The threat diagrams
furthermore document the results of the risk estimation by the likelihood and
consequence annotation. For example, the unwanted incident of degradation of aircraft
(A/C) position data occurs with likelihood possible and has a minor consequence for
the availability asset. The likelihood and consequence in combination determines the
risk level.

6.2.3.3 Requirement and Risk Modelling after Change

Figure 37 Requirement Model after the introduction of the AMAN

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 93/137

The user (e.g. the designer or the ATM service provider) decides to introduce two new
components to the ATM system, namely the AMAN to support the PLC in the
computation of flights arrival sequences, and the ADS-B provides more highly accurate
information about aircraft position. The change request submitted by the user requires
the previous requirement model to be updated with the introduction of two new actors,
the AMAN and the Sequence Manager as illustrated in Figure 37.

The ADS-B has several benefits for air traffic management, but it raises several new
security concerns; the ADS-B transmissions can be easily corrupted, and the signal
can moreover be eavesdropped as they are openly broadcasted. Thus, because of the
introduction of the ADS-B, we consider also the asset of confidentiality of the
surveillance data provided by the ADS-B.

After having updated the requirement model and extracted the new asset, the
requirement engineer decides to invoke the risk assessment in order see if there are
new treatments that should be taken into account in the requirement model given the
change requirement and the new asset.

According to the integrated process, the requirement engineer provides the list of
assets to the risk analyst to help him in identifying the target of analysis and the assets.
We assume that the risk analyst previously has conducted and documented a risk
assessment before the changes, and that the risk analyst has access to the
specification of the change requirement provided by the user. The new asset that is
passed from the requirement engineer serves to increasing the details of the target
description and in more precisely defining the focus of the risk assessment after the
changes.

Based on the risk models before the changes, the description of the change
requirement, as well as the new asset that is passed from the requirement engineer,
the risk analyst updates the risk assessment documentation. The risk assessment is
conducted by following the method for the risk assessment of changing systems as
described in D5.3.

Figure 38 Risk Model after the introduction of the AMAN

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 94/137

The threat diagram of Figure 38 shows a sample of the results of the updated risk
identification and risk estimation. The diagram models the changes to risks by
distinguishing between risks before changes and risk after changes. The two-layered
elements are aspects that are present both before and after, whereas the other
elements are aspects that are present only after the changes.

Figure 39 Treatment options after the introduction of the AMAN

Figure 40 Treatment options after the introduction of the AMAN

From the before-after threat diagram we see that the unwanted incident of degradation
of A/C position data occurs both before and after the changes. The likelihood is

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 95/137

possible both before and after, and the consequence for availability is minor both
before and after. The unwanted incident of leakage of critical A/C position data occurs
only after the changes, and has consequence for the asset of confidentiality that was
passed from the requirement engineer.

After the risk assessment is concluded, the risk analyst identifies and documents
treatments for the unacceptable risks, addressing risks for both of the assets. Some of
the identified treatments are documented in the treatment diagrams of Figure 39 and
Figure 40.

According to the integrated process, the risk analyst passes the treatment options to
the requirement engineer. Focusing on the asset of confidentiality that the
requirements engineer initially passed to the risk analyst, the requirement engineer
conducts an update of requirement model of Figure 37. The resulting requirement
model is illustrated in Figure 41 to by adding the action “Encrypt Data” that fulfills the
security goal “Confidentiality” which protects the resource “Surveillance Data”.

Figure 41 Requirement model updated with treatment actions

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 96/137

6.3 Integration of Requirements Engineering with
Design

Industrial Requirements Management tools such as DOORS T-REK enable to manage
the elicited requirements by providing an efficient traceability with the Product
Breakdown Structure, that is to say the elements of the system.

Model Driven Engineering brings new Design tools that provide new means to assess
the architecture by validating properties on the model. Security is considered as a non-
functional property of the system leading to specific constraints or needs to which the
system must conform.

The interaction between WP3 and WP4 lies in the way security requirements are used
to influence system design, and how the conformance of the system with respect to the
high-level security objectives is evaluated.

An integration is proposed by the Security DSML developed at Thales after EU-FP6
Modelplex project. This tool shall be regarded as a security viewpoint of a system
model design tool in the sense where viewpoint is intended as a technology to provide
non functional properties tooling integrated to a system engineering workbench, and as
it is studied in French research project Movida (ANR – Call 8).

Security DSML focuses on a risk management process at system design phase, which
provides security requirements as output. Starting from a model design, the Security
DSML tooling enables to perform a risk analysis. The management of the risks leads to
define Security Objectives, which are in their turn refined in Security Requirements.
These security requirements lead to an evolution of the model since security solutions
shall be implemented to complete or make the model evolve.

The WP3-WP4 link is demonstrated in D4.2 on the ATM use case of the introduction of
the AMAN, which addresses the Organizational Level Change and at least the
Information Access and Information Protection security properties.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 97/137

The exchange of information between the requirement and system models is illustrated
with a role-based access control setting. In the Thales methodology, information flows
naturally from requirements to system design through semi-formal contractual
requirement specifications managed with DOORS T-REK. However, dealing with the
opposite direction, that is verifying that requirements are actually met by a system and
that they are complete with respect to high-level security objectives are difficult tasks
that are not automated in general. We show how UMLseCh can be used to help with
the latter in a simple example. The scenario developed in D4.2 purposely presents an
incomplete set of requirements derived through a flawed risk analysis, and then how
UMLseCh detects and identifies those shortcomings. This allows the introduction of
additional requirements to the system.

Industrial practices are still highly informal therefore formal verification is not feasible in
general. What can be reasonably achieved, however, is a traceability link between
requirements and system elements, such that any evolution in one of the models
triggers a notification in the other. This is a crucial element to ensure the consistency of
the models, which is all the more important that it involves distinct areas of expertise
and consequently distinct actors.

Further description of the integration proposed by Thales fits in D4.4 prototype.

6.4 Integration of Requirements Engineering and
Testing

The SecureChange process aims at developing an overall approach to the engineering
of secure, life-long and evolvable systems. Methods and techniques for requirements
engineering is only one of the cornerstones of the overall approach, and in the wider
setting of security engineering of changing and evolving systems the requirements
engineering constitutes one part of the overall process.

Moreover, in the setting of changing and evolving systems, there is a need to
understand not only how the changes may affect security requirements on one hand
and testing models on the other hand; we also need to understand how changes to
requirements affects test models, and how the propagation of changes from the one to
the other should be dealt with in a systematic way.

We address the problem both at a conceptual level and at a process level. At the
conceptual level we present an integration of concepts and explain how requirements
artifacts should be mapped to test artifacts and vice versa. At the process level, we
utilize the conceptual level integration and explain how the conceptual integration
comes into play in the integration of the respective methodologies.

We illustrate and exemplify the integrated process based on the Specification Evolution
Change Requirement of the POPS case study.

6.5 Conceptual Integration
In this section, we describe how the SeCMER conceptual model concepts are mapped
on the test concepts for the purpose of integration so to identify an interface between
the two domains.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 98/137

In the following we first separately present the core and basic concepts of requirements
engineering and testing. Thereafter we present the conceptual level integration.

6.5.1 Requirement Concepts

The UML class diagram of Figure 42 gives an overview of the basic concepts of
requirements engineering and the relations between them. We refer to Section 2 for a
detailed presentation of the conceptual model. In the following we give the definitions
of the concepts.

Figure 42 Basic requirements concepts

• Action: An entity performed by an actor, which can generate events, and can
have preconditions and post‐conditions

• Actor: An entity that can act and intend to want or desire

• Asset: An entity of value that can be owned and used

• Goal: A proposition an actor wants to make true

• Proposition: A statement that can be true or false

• Resource: An entity without intention or behavior

• Security goal: A proposition that specifies how to prevent harm to an asset
through the violation of confidentiality, integrity, and availability security
properties

• Situation: partial state of the world described by a proposition

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 99/137

• Requirement: Statement about what the system should do

• Test Model: Dedicated model for capturing the expected SUT behavior (Class
diagram, State machine)

• Test Case: A finite sequence of test steps

• Test Intention: User's view of testing needs

• Test Suite: A finite set of test cases

• Test Script: Executable version of a test case

• Test Step: Operation's call or verdict computation

• Test Objective: High level test intention

6.5.2 Integration

In the conceptual integration we distinguish between what we refer to as shared
elements on the one hand and mappable elements on the other hand. The shared
elements are concepts that are common to requirements engineering and testing, with
the same semantics in both domains. The mappable elements are concepts from one
domain that are not shared by the other, but are nevertheless related to the other
domain and can be mapped to concepts of the other domain.

We identify one share element that is Requirement. A Requirement in both domains
represents a statement by a stakeholder about what the system should do.

The concepts of Actor, Goal and Action are mapped on the Test Model. In particular,
the concept of Actor is used to identify the system under test (SUT). The concept of
Goal and Action are used by the testing engineer to build the Test Model which
represents the expected behavior of the SUT. The Test Model is usually represented
using UML Class Diagrams, Instance Diagrams and State Machine Diagrams. The
dynamic behaviors of those diagrams are described using OCL (Object Constraint
Language). The goals and actions in the Requirement Model are identified by a unique
name that is used to annotate the State Machine of the Test Model and the OCL code
in order to achieve traceability between the Requirement Model and the Test Model.

In the integration between requirement engineering and testing, we also use the
artifacts achievement matrix and test results. The achievement matrix is produced as
the result of requirement analysis, and specifies the continuity and achievement level
for each requirement. A test result is the outcome of the execution of a test case which
can be fail, pass or inconclusive. The test results are used to determine the level of
requirement coverage. If the test result for a given test case is “fail” or “inconclusive”
the corresponding requirement under test is not satisfied by the SUT or it is not
correctly implemented.

An overview of the conceptual integration is given in Table 1.

Table 4 Conceptual Integration

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 100/137

Requirement concept Testing concept Kind of integration

Goal Test Model (State
Machine, OCL code)

Requirement concept
mapped to Testing concept

Action Test Model (State
Machine, OCL code)

Requirement concept
mapped to Testing concept

Achievement matrix Test result Requirement concept
mapped to Testing concept

Actor SUT Requirement concept
mapped to Testing concept

Requirement Requirement Shared concept

6.6 Integrated Process for Change Management
In this section we present the integration between requirements engineering and
testing engineering processes. The two processes should still be understood as
separate processes with their own iterations, activities and techniques for managing
change. The integrated process explains at which steps of the respective processes
the conceptual level interface can or should be invoked. The integrated process is
hence based on the conceptual integration presented in the previous section.

The integrated process presented here can be understood as an instantiation of the
more general and project wide integration presented in deliverable D2.2.

6.6.1 Overview of Process

The UML activity diagram of Figure 42 gives a high-level overview of the integrated
process. The diagram is divided into three partitions to distinguish between the
activities and objects under the control of the user, the requirement engineer, and the
test engineer. The user is typically the client commissioning the testing and may, for
example, be the owner of the system that is under test.

The integrated process is defined such that the requirements engineering process and
the testing process are conducted separately. In the diagram, the diamonds specifies
branching of the sequence of activities. When there is no guard condition on the
branching (specified by the notes with Boolean expressions), the process proceeds
along one or both of the branches. This gives a wide flexibility on how the overall
process may be conducted.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 101/137

Figure 42. Integrated process

The process starts when the user makes a change request that is passed to the
requirement engineer. The requirement engineer uses the previous requirement model
(ReM before) and the change request to update the requirement model, producing
ReM after. Based on the ReM after, new actors, goals and actions are extracted if
relevant. At this point, the requirement engineer may interact with the test engineer in
order to have the test engineer to identify which are the part of the test model that are
affected by the change in the requirement model. Then, the testing engineer checks

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 102/137

which tests are reusable or are obsolete and if there is the need to produce new test
cases.

If this is the case the new tests are executed and the result of the execution is passed
back to the requirement engineer that should take them into account in the
requirements analysis.

The requirement analysis must determine whether requirements have been fulfilled
based on the test results. If all the test results are successful, the requirements are all
satisfied and, thus, the requirement engineering process concludes and reports back to
the user. If some of the requirements are not fulfilled by the SUT, the requirement
engineer must identify the problem.

If there is a problem with the ReM, the requirement analyst must backtrack and search
for an alternative way of updating the ReM when considering the change request that
was initially passed from the user.

If there is a problem with testing, the test engineer must determine whether there is the
need to produce new test cases or not.

The UML sequence diagram of Figure 43 is taken from D2.2 and shows a sample
change story that illustrates the global integration. The change story is initiated by a
change request from the user, and the subsequent interaction exemplifies how the
change may propagate. We refer to D2.2 for a more detailed explanation.

Figure 43 Simple change story

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 103/137

Comparing this sample of the global integration with the integrated process presented
in this section, we see that the sample change story is supported by the latter. The
main difference is that the integrated process described in this section is more detailed
and supports a wider set of interactions.

6.7 Application to POPS Case Study
In the following we illustrate and exemplify some of the steps of the integrated process
of testing and requirements engineering based on change requirement “Specification
Evolution” of the POPS case study.

6.7.1 Change Requirement

The Specification Evolution Change Requirement is about the changes in the card life
cycle that have been introduced in GP 2.2 with respect to GP 2.1.1. The card life cycle
differences in the two versions of GP specification are illustrated in Figure 44.

Figure 44 Card Life Cycle in GP 2.1.1 and GP 2.2

The main differences between the two GP specification versions are that in GP 2.2 not
only the Issuer Security Domain can perform any state transition in the card life cycle
but any Privileged Security Domain and that a Privileged Application can terminate the
card from the CARD-LOCKED state.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 104/137

6.7.2 Requirement and Test Modeling for GP 2.1.1

The requirement model for Card Lifecycle Management of Global Platform 2.1.1 is
illustrated in Figure 45. The model consists of four actors namely: OPEN (Global
Platform Environment), Privileged application, Privileged SD (Security Domain), and
Issuer SD (ISD). Privileged application can only terminate card lifecycle by setting card
status from any state (except CARD_LOCKED) to CARD_TERMINATED. Additionally,
privileged application can lock the card by changing card state from SECURED to
CARD_LOCKED. Security Domain is a special kind of privileged application, and
therefore, has exactly the same behavior of privileged application in terms of card
lifecycle management. The other transitions in the card life cycle can only be
performed by the ISD.

Figure 45 Requirement Model for GP 2.1.1

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 105/137

Figure 46 Test Model for GP 2.1.1

Figure 46 depicts the state machine for the card lifecycle in GP 2.1.1. For the sake of
this example we only focus on Goal G5 (Set card state to TERMINATED). This goal is
detailed in 3 transitions (colored in red) of the state machine. They provide test cases
for 4 sub goals: G8, G11, G12 and G13.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 106/137

Figure 47 OCL code for transition from CARD_LOCKED t o TERMINATED

Figure 47 shows how the OCL code for the transition from the status CARD_LOCKED
to the status TERMINATED in the State Machine has been tagged with the names of
the goals G11 and its sub goals G8 and G12 that are part of the requirement model in
Figure 44.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 107/137

Figure 48 OCL code for setStatus APDU command for Pri vileged Application

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 108/137

Figure 49 OCL for setStatus APDU command for Privilege d Security Domain

Figure 48 and Figure 49 provide a test model for goal G13 that is divided in two
separate transitions, one for an issuer SD and one for an application with
cardTerminate privilege.

6.7.3 Requirement and Test Modeling after Change

Figure 50 describes the requirement model for Card Lifecycle Management in GP 2.2,
where the actors are same as of GP 2.1.1. There are two changes in card lifecycle
management. First, privileged application can now terminate card lifecycle from any
state if the application has appropriate privileges. Second, a security domain is more
powerful since it can now perform all card state transitions which can only be done by
issuer security domain in the previous version.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 109/137

Figure 50 Requirement Model for GP 2.2

Figure 51 depicts the test model for card lifecycle in GP 2.2, with specific transitions
red colored. They provide test cases for Goal G5. They are detailed in the OCL code
reported in Figure 52 and Figure 53. The two figures reflect the difference between two
types of actors: an application with cardTerminate privilege and a SD with
cardTerminate privilege.

Figure 51 Test Model for GP 2.2

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 110/137

Figure 52 OCL code for setStatus APDU command for pr ivileged application

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 111/137

Figure 53 OCL code for setStatus APDU command for pr ivileged SecurityDomain

According to the integrated process, test results from test cases of two models in both
GP 2.1.1 and GP 2.2 are fed back to the requirement engineer. Then he can evaluate
the coverage of requirements and test results are propagated to the corresponding
goals to estimate their satisfaction.

In POPS case study, all the tests are reported as successful. Hence, full requirement
coverage is achieved.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 112/137

7 Evolution of Security Models

This section discusses various concepts associated with the notion of change. To
avoid restricting the generality of the change model, it will not be bound to
requirements modeling, but to the Integrated Model introduced by WP2 in D.2.1,
consisting of requirement, architectural, risk, etc. domain models. In a passive view of
the classification, model snapshots are observed to change over time. The change
model will show the properties and relationships of model snapshots, and the different
kinds of changes that span between them.

The first part of the Section introduces our proposed generic, domain and application
independent Change Model. The second part discusses a concrete industrial change
model used by Thales to manage the changes to requirements and related models. We
also provide a mapping between the two different terminologies.

7.1 Generic Model of Change Concepts
This Section identifies a number of concepts to describe changes experienced by an
engineering model. An UML Package representation of the concepts discussed here is
presented in Figure 54.

Figure 54 Change Concepts

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 113/137

7.1.1 Integrated Model

Before discussing change, we have to find a representation for the engineering model
that are subject to change. Borrowing from the terminology of WP2, we use the
concept of Integrated Model to refer to the set of engineering models from various
domains (Architecture, Risk, Requirements, etc. interlinked through traceability) as a
single entity. An Integrated Model instance represents a single snapshot of these
models and their linkages.

From the point of view of model versioning and change history, each Integrated Model
snapshot assumes a certain role . As this role itself can change also, the set of possible
roles form the state machine depicted in Figure 55. The model snapshot that
represents the current reality is the Realized model. If reality changes and a new
Realized model emerges, the older version is marked as Replaced . Unrealized model
snapshots that are created for analyzing possible uncontrolled (provisional, expected)
future changes have the Anticipated role, while a model that show the result of a
candidate outcome of a deliberate decision is a Planned model. Both kinds can be
Realized eventually, or Abandoned otherwise. If security deficiencies, inconsistencies
or other problems are discovered in a Realized, Planned or Anticipated model (either at
the creation of the snapshot or later), and it would have to be superseded by newer
versions to address the problem, the model is marked Transient .

Figure 55 State Machine of Roles of an Integrated Mo del

7.1.2 Change
The key concept of the Change Model is Change . A Change instance represents the
updating (or planning to update) of an Integrated Model. The snapshot that is updated
is called the preState of the Change, while the resulting model is the postState .
Sometimes the Change encompasses several options (alternatives that the engineers
or outside forces can choose from) leading to different postStates; each option is a
single ChangeStep . A timestamp can also be associated to the Change.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 114/137

As indicated by the intent attribute, some Changes are Requested by stakeholders,
others are passively Observed and cannot be influenced, while the rest are Reactive
changes driven by engineers to restore desired properties of the model after earlier
changes. On a related note, a Change can have a single triggering Change Event that
is the cause of the Change, but it is possible that no trigger is identified for an
Observed change. An optional focus attribute tells us conceptually what type of
information is subjected to Change: either our Knowledge about the system and its
context is changed, or our Assumptions are changed, or the change is in the Scope
of the analysis producing the model, or it reflects a design Decision being made or
revised.

7.1.3 Change Line and Change Step

A Change Line describes a longer trajectory from a single preState model to a single
postState model, through several successive intermediate models. It also contains the
Changes that happen between each model (except the postState) and its successors.
The Changes can even have Abandoned options.

A Change Step is the transition from a single preState model to a single postState
model. Each option of a Change is described by a Change Step. The revolution
attribute indicates whether the step is considered evolutionary (gradual change over
time) or revolutionary (large parts of the model removed and/or created from scratch).
Based on granularity, there are two kinds of Change Steps. An Opaque Step does not
contain any further information about how the postState is derived from the preState. It
is also possible, on the other hand, to consider a composite step that consists of
intermediate stages, changes between them, or even explored and rejected
alternatives; therefore the previously introduced Change Line is also one kind of
Change Step. Furthermore, it is possible to use these composite steps as options for a
Change, as well as the opaque ones; this way a long engineering process of
considering alternatives and their consequences can be condensed into the best and
final version.

Refer to Section 7.1.5 for an illustration of how the concepts of Change Line, Change
Steps and the options of a Change are related to each other.

7.1.4 Change Event

While some Observable Changes may have an unknown cause, the majority of
Changes are triggered by a well-defined Change Event . Some Change Events are
initiated externally; others are caused by previous changes to the model, so that a new,
Reactive Change is triggered by the Change Step leading up to its preState. If the
reason of the Change Event is associated with security concerns, it can be marked as
securityDriven ; the triggered Change in this case is especially in the focus of
SecureChange.

We distinguish four kinds of Change Events.

• A Time Event is triggered by reaching a certain point of time; e.g. a pre-
scheduled revision of security risks after one year of operation, or a periodical
renewal/replacement of supplier Actor contracts.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 115/137

• An Operation Event is a human intervention into the system, e.g. a stakeholder
requesting new functionality.

• A Notification represents the elementary model manipulations performed by
the previous Change Step: addition, deletion, attribute modification, replacing,
etc. depending on the modeling technology used.

• Alert is a higher level mechanism that conveys a more abstract, domain-
specific report of the modifications performed by the preceding Change Step.

7.1.5 Illustrative Example

This Section illustrates the introduced concepts by an example evolution story.

A fraction of the lifecycle of an Integrated Model is shown on Figure 56.

1. At the beginning, there is stable version of the model.

2. Due to an uncontrolled change in circumstances (e.g. a new regulation), an
Observed Change happens (without offering multiple options), leading to a
postState Integrated Model. As opposed to the initial snapshot, the new model
has some security problems, that are indicated by Alerts.

3. They trigger a Reactive Change to fix the problems in this Transient state. The
Change has two options, corresponding to design alternatives. Each option is
defined by an Opaque Step leading to a different Planned version of the
Integrated Model.

4. However, one of the proposed solutions raises further security issues, so it also
becomes a Transient state. A second Reactive Change with a single option is
initiated, leading to a final and consistent Planned model.

Figure 56 Example evolution, phase one (exploring al ternatives)

Before a decision can be made between the two viable choices, the set of final
candidate solutions has to be represented as the options of the first Reactive Change.
One of the options is an Opaque Step leading to a problem-free Integrated Model. As
the other immediate Opaque Step only leads a Transient version, it can be wrapped
together with the next successive one as a Change Line, leading all the way to the
candidate solution from the first Transient state. This way, the sequence of
intermediate stages (the second Transient model in this case) can be collapsed and
abstracted away. The first Reactive Change will have two options, an Opaque Step
and a Change Line, leading to the two candidate solutions. This makes the Change

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 116/137

with multiple options ready to support the decision. The new state is indicated in Figure
57.

Figure 57 Example evolution, phase two (reduced to s table candidates)

Finally, a decision is made and one of the options is selected. The disfavored
Proposed model becomes Abandoned. The chosen solution is implemented, and the
corresponding model becomes Realized. The superseded snapshot will be marked as
Replaced. This whole period of evolution is condensed into a Change Line leading
from the old reality to the current one, hiding obsolete details, as indicated in Figure 58.

Figure 58 Change Line, phase three (after decision)

7.2 Definition of Change Control
Based on the generic notions of change introduced in Section 7.1, we now introduce
our terminology regarding the mechanisms of change control. An UML Package
representation of the concepts discussed here is presented on Figure 59.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 117/137

Figure 59 Definition of Change Control Facilities

7.2.1 Change Handler

A key concept of change control is Change Handler , which governs the changes over
the lifetime of a system. The Change Handler is composed of the body of engineers of
various domains (risk analysts, system architects, verification experts, etc.) and the
entirety of automated mechanisms and other supportive technology at their disposal.

We use a control theory metaphor, in which the Change Handler entity acts as a
controller, observing and reacting to Changes, as well as performing Changes itself. In
accord with this metaphor, the two control mechanisms of great importance are called
the sensors and actuators provided by the Change Handler.

7.2.2 Change Sensor

The role of Change Sensor s is to monitor Changes (Observed, Requested and
Reactive alike) and Change Steps, compare the preState against the postState, filter
the large volume of elementary Notifications; and raise high-level Alerts when security
problems are detected. These Alerts can trigger Reactive Changes to correct the
issues in the Transient model.

The Graph Change Pattern (GCP) formalism that will be introduced in Section 4.5, as
well as the Change Scenario concept related to the Change Pattern approach of WP2
can be regarded as examples for automated Change Sensor formalisms.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 118/137

7.2.3 Change Actuator

While Alerts produced by Change Sensors and other Change Events define when a
Change is necessary, the role of a Change Actuator is to define how to change the
model, what the proposed Change (Steps) should be. As discussed earlier, Change
Steps can either be composite Change Lines or Opaque Steps; the contents of the
latter can be defined by a Change Actuator. When providing Reactive behavior, a
Change Actuator can be associated with a guard Change Sensor that raises the alerts
that the actuator will react to.

Some Change Actuators are Human Actuators , reflecting decisions and proposals
made by a board of engineers and experts. It is also possible to employ software
components that can draft proposed modifications, typically specializing in Reactive
interventions; these are Automated Actuators .

The Evolution Rules formalism that will be introduced in Section 4, as well as the
Guidance concept related to the Change Pattern approach of WP2 can be regarded as
examples for Automated Actuator formalisms.

7.3 Correspondence of Change Model Concepts
The various Work Packages of SecureChange use their own concepts to model
change and to represent the aspects of change that are used in their methodology and
perspective. Figure 60 shows the correspondence of the concepts used in various WPs
(as well as the Thales change model presented in Appendix A.4) with the concepts of
the generic model introduced here. The first column lists those concepts that were
introduced here, but also have an exact or loose equivalent defined by another WP or
the Thales model. The second column lists the numbers of WPs that have a similar
concept (or T for Thales), and the respective local names are shown in column 3.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 119/137

Generic Change Concept WP WP-specific Concept

Integrated Model 2 | T Integrated Model | Static Model

Realised / Planned 2 realised / planned

Planned, Anticipated 2,5 ~before-after perspective

Change Line T Change Line

revolution 4,5,7 Evolution/Revolution

Change 2 Change Transaction

Reactive 2,4,5,T ~ maintenance perspective

Observed 4 ~ unplanned perspective

Observed / Requested 2 Change Log / Change Request

Change Focus 5 ~ “Change Kind”

Change Step T Change

Change Event 2, T Change Trigger / Change Event

securityDriven 4 “Change Kind”

Time Event 2 “time events”

Operation Event 2 “action events initiated by the stakeholders”

Notification 2 “change events caused by the
modification/creation/deletion of some model
element”

Alert 2 “conditions on the system state”

Change Control 2,4,5,T ~ continuous perspective

Change Sensor T Evolution Function

Figure 60 Correspondence of Change Concepts

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 120/137

8 Conclusions

In summary, this report has described SeCMER, a requirements engineering
methodology for addressing evolutionary security goals. The approach is grounded in
the Jackson-Zave framework and has three interleaving stages: requirements
elicitation, argument analysis and requirements evolution.

For the requirements elicitation stage, we have proposed a meta-model of evolving
security requirements, and a light weight process, aided by a tool, to support elicitation
of requirements.

For the argument analysis stage, we have proposed a meta-model of arguments,
which has been implemented in our OpenPF tool to support arguments visualization,
formalization of arguments using proposition logical to check the validity of rebuttal and
mitigation relationships between arguments, and formalization of arguments using the
Event Calculus to reason about arguments using deductive and abductive reasoning.

For the requirement evolution stage, we have proposed a meta-model of evolution
rules, and implement them in order to detect and apply incremental changes to the
requirement models. The formalizing and computation aspects of the transformation
have also been discussed.

We have discussed how these three stages relate to each other, and apply the whole
methodology to a significant example from the ATM case study.

Furthermore, we have discussed how our methodology integrates with the process and
architecture, risk, and design methodologies developed in the SecureChange project,
whilst also providing a survey of how the notion of change is used in different
SecureChange methodologies.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 121/137

9 Acknowledgement

We thank external and interview reviewers of the SecureChange project for their
insightful comments and constructive criticisms.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 122/137

References

[1] Albert, L., Average Case Complexity Analysis of Rete Pattern-Match Algorithm
and Average Size of Join in Databases, in Foundations of Software Technology
and Theoretical Computer Science. 1989, Springer Berlin / Heidelberg. p. 223-
241.

[2] Alferes, J.J., F. Banti, and A. Brogi. An Event-Condition-Action Logic
Programming Language. in 10th European Conference Logics in Artificial
Intelligence (JELIA). 2006. Liverpool, UK: Springer.

[3] Becker, S.M., T. Haase, and B. Westfechtel, Model-Based a-Posteriori
Integration of Engineering Tools for Incremental Development Processes.
Software and System Modeling, 2005. 4(2): p. 123-140.

[4] Bergmann, G., A. Horvath, I. Rath, and D. Varro, A Benchmark Evaluation of
Incremental Pattern Matching in Graph Transformation, in Proceedings of the 4th
international conference on Graph Transformations. 2008, Springer-Verlag:
Leicester, United Kingdom.

[5] Bergmann, G., A. Okros, I. Rath, D. Varro, and G. Varro, Incremental Pattern
Matching in the Viatra Model Transformation System, in Proceedings of the third
international workshop on Graph and model transformations (GraMoT 2008).
2008, ACM: Leipzig, Germany.

[6] Bergmann, G., I. Rath, G. Varro, and D. Varro, Change-Driven Model
Transformations. Change (in) the Rule to Rule the Change. Software and System
Modeling (under review).

[7] Bezivin, J., On the Unification Power of Models. Software and System Modeling,
2005. 4(2): p. 171-188.

[8] Czarnecki, K. and S. Helsen, Feature-Based Survey of Model Transformation
Approaches. IBM Systems Journal, 2006. 45(3): p. 621-645.

[9] Ehrig, H., G. Engels, F. Parisi-Presicce, G. Rozenberg, and A. Rensink,
Representing First-Order Logic Using Graphs, in Graph Transformations. 2004,
Springer Berlin / Heidelberg. p. 187-190.

[10] Forgy, C.L., Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem, in Expert Systems, G.R. Peter, Editor. 1990, IEEE Computer
Society Press. p. 324-341.

[11] Gangemi, A., N. Guarino, C. Masolo, A. Oltramari, and L. Schneider, Sweetening
Ontologies with Dolce, in Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management. Ontologies and the
Semantic Web. 2002, Springer-Verlag.

[12] Gerber, A., M. Lawley, K. Raymond, J. Steel, and A. Wood, Transformation: The
Missing Link of Mda, in Proceedings of the First International Conference on
Graph Transformation. 2002, Springer-Verlag.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 123/137

[13] Gunter, C.A., E.L. Gunter, M. Jackson, and P. Zave, A Reference Model for
Requirements and Specifications. IEEE Softw., 2000. 17(3): p. 37-43.

[14] Haley, C., R. Laney, J. Moffett, and B. Nuseibeh, Security Requirements
Engineering: A Framework for Representation and Analysis. IEEE Trans. Softw.
Eng., 2008. 34(1): p. 133-153.

[15] Jackson, M., Problem Frames: Analyzing and Structuring Software Development
Problems. 2001: Addison-Wesley Longman Publishing Co., Inc.

[16] Kowalski, R. and M. Sergot, A Logic-Based Calculus of Events. New Gen.
Comput., 1986. 4(1): p. 67-95.

[17] Lamsweerde, A.V., Goal-Oriented Requirements Engineering: A Guided Tour, in
Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering. 2001, IEEE Computer Society.

[18] Lin, L., B. Nuseibeh, D. Ince, and M. Jackson, Using Abuse Frames to Bound the
Scope of Security Problems, in Proceedings of the Requirements Engineering
Conference, 12th IEEE International. 2004, IEEE Computer Society.

[19] Lin, L., B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett, Introducing Abuse
Frames for Analysing Security Requirements, in Proceedings of the 11th IEEE
International Conference on Requirements Engineering. 2003, IEEE Computer
Society.

[20] Massacci, F., J. Mylopoulos, and N. Zannone, Computer-Aided Support for
Secure Tropos. Automated Software Engineering, 2007. 14(3): p. 341-364.

[21] Miller, R. and M. Shanahan, The Event Calculus in Classical Logic - Alternative
Axiomatisations. Electron. Trans. Artif. Intell., 1999. 3(A): p. 77-105.

[22] Nhlabatsi, A., B. Nuseibeh, and Y. Yu, Security Requirements Engineering for
Evolving Software Systems: A Survey. International Journal of Secure Software
Engineering (IJSSE), 2010. 1(1): p. 54–73.

[23] Rath, I., G. Bergmann, A. Okros, and D. Varro, Live Model Transformations
Driven by Incremental Pattern Matching, in Proceedings of the 1st international
conference on Theory and Practice of Model Transformations. 2008, Springer-
Verlag: Zurich, Switzerland.

[24] Shanahan, M., The Event Calculus Explained, in Artificial Intelligence Today,
J.W. Michael and V. Manuela, Editors. 1999, Springer-Verlag. p. 409-430.

[25] Tun, T.T., R. Chapman, C. Haley, R. Laney, and B. Nuseibeh, A Framework for
Developing Feature-Rich Software Systems, in Proceedings of the 2009 16th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems. 2009, IEEE Computer Society.

[26] Wang, Y.-W. and E.N. Hanson, A Performance Comparison of the Rete and
Treat Algorithms for Testing Database Rule Conditions, in Proceedings of the
Eighth International Conference on Data Engineering. 1992, IEEE Computer
Society.

[27] Yu, E.S.K. and J. Mylopoulos, Understanding “Why” in Software Process
Modelling, Analysis, and Design, in Proceedings of the 16th international

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 124/137

conference on Software engineering. 1994, IEEE Computer Society Press:
Sorrento, Italy.

[28] Zave, P. and M. Jackson, Four Dark Corners of Requirements Engineering. ACM
Trans. Softw. Eng. Methodol., 1997. 6(1): p. 1-30.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 125/137

Glossary

A claim is a (probably grounded)

predicate whose truth-value will be

established by an argument, 30

A goal is a concept found in GORE

approaches, and represents a

proposition an actor wants to make

true, 26

A proposition is an object

representing a true/false

statement, 25

A resource is an entity without

intention or behavior, 26

A situation is a partial state of the

world described by a proposition

(its description in [11]), 25

An action is an entity performed by

an actor, which can generate

events, and can have preconditions

and post-conditions, 26

An actor is an entity that can act and

intend to want or desire, 26

An argument contains one and only

one claim. It also contains facts and

rules in domain knowledge, 30

An asset is an entity of value that can

be owned and used, 26

Domain is specialized into Actor,

Action, Asset, and Resource, 26

Domain Knowledge is a set of

ungrounded predicates that can be

evaluated to true or false once the

values of all terms in the predicates

are known, 31

Facts are grounded predicates --

something that is either true or

false where terms in these

predicate must be constant, 30

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 126/137

A. Appendix: State of the Practice

In this section we present the Thales industrial method for security risk analysis, and
we show the analogies with our methodology for security goals elicitation and analysis.
Thales method aims at supporting the analysis and assessment of security risks for a
system, and the specification of requirements for security measures to address those
risks.

A.1. THE SECURITY RISK ANALYSIS METHOD : PRINCIPLES
Our prospective security risk analysis method builds upon model-based engineering
methods and techniques. All activities of our method are organised around the building
and usage of models, that is formalised, precisely defined, interconnected and
integrated representations of the objects under study.

As represented in Figure 61 our proposed method relies on the development of a
modelling framework that combines in a synchronised way a set of models that
constitute separate viewpoints over the engineering problem:

Figure 61 The security analysis method in Thales co ntext – big picture

• The System architecture model contains the architectural design of the system;
this model is developed within the mainstream engineering processes, along at
least two dimensions: the functional/logical architecture of the system
(functional capacities and data to be realised by the system) and the physical
/implementation architecture of the system (actual hardware and software
components that realise the functional capacities).

• The Business need model captures a representation of the business context for
the system: business process that is supported, underlying business

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 127/137

organisation, business objects, key performance indicators, strategic drivers,
etc.

• The Risk analysis model and security objectives model capture the results of
the security risk analysis method that is proposed in dedicated DSML
(presented in next section). These models include a representation of the
system architecture that is relevant to the needs of the security analyst, this
model is called context model. This model is traced back and maintained in
synchronisation with the system architecture model (see XXX). The security risk
analysis information is defined as annotations or related new concepts added
over the system architecture elements. The risk analysis model and security
objectives model may also be traced to elements of information defined in the
Business need model.

• The Requirement Database captures all kinds of systems requirements
(Security, Safety, Maintainability, Cost, etc.). Security goals are derived from
security objectives model of dedicated DSML (see XXX). This mapping enables
to add security goals with other kind of requirement addressed for a complex
system. Requirement Database is traced back and maintained in
synchronisation with the system architecture model and Business need model.

The System architecture model and the Business need model are part of architecture
modeling framework that we are developing to address service-oriented types of large-
scale enterprise integration systems or systems of systems. In the Thales context, the
official database of Requirement Management is Rational DOORS with the T-REK
add-ons.

A.2. DOORS T-REK
Rational DOORS XXX (Dynamic Object Oriented Requirements System) provides:

• A requirements Database that allows all stakeholders to participate in the
requirements process

• The ability to manage changing requirements with RCM Tools (Requirement
Change Management)

• Powerful life cycle traceability to help teams align their efforts with the business
needs and measure the impact that changes will have on everything from
business goals to development

• Links requirements to design items, test plans, test cases and other
requirements for easy and powerful traceability

• Automatic generation of traceability matrix.

• Automatic document generation of DOORS module into MS WORD format
(.doc).

As suggested by Figure 62, a DOORS project is composed by two kinds of modules:

• Formal Modules gather requirements information and is used for Requirement
Specification. One Requirement is considered as one object which contains a
set of attributes (standard attributes are Object Identifier, Object Heading and
Object Text). It’s possible to filter some attributes in views.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 128/137

• Link Modules gather links information. Links module contains a set of Linksets
which represent link information between two Formal Modules.

Figure 62 DOORS project structure

T-REK (Thales Requirement Engineering Kit) is an over-layer of DOORS which
enables to distinguish different kinds of Formal Modules and Link Modules. T-REK
offers a Relationship Manager to represent a project structure and relations between
different formal modules: we call it a Datamodel. In a simplified Datamodel as shown
by Figure 12 we distinguish:

• Requirement Module, which represents Requirement Specification Document
(it’s possible to distinguish User Requirement Specification and System
Requirement Specification). The link between this kind of module corresponds
to “satisfies” link.

• Integration, Validation, Verification (IVV) Module, which gathers integration and
tests campaign information (e.g. Test Result, Expected Test Method ...). IVV
modules are linked with Requirement module by a “verifies” link.

• Product Breakdown Structure (PBS) Module, which contains all subsystems or
components (depending on project granularity) and all related information (e.g
kind of component software, hardware ...). Components/Subsystems are
represented by a DOORS object. Requirements modules are linked with PBS
modules by a “is allocated to” link.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 129/137

Figure 63 Simplified Datamodel in T-REK

Risk are not represented in Standard T-REK Datamodel, this is why we plan to connect
our DSML based on Risk analysis with DOORS T-REK.

A.3. APPLICATION IN THALES REQUIREMENT WORKBENCH
This deliverable cannot be the place for a detailed presentation of the conceptual
model and syntax of DSML. We are providing below representative extracts. More
details are provided in XXX. The core part of the conceptual model6 is represented in
Figure 64.

The system under analysis is considered to hold targets and essential elements.
Targets are physical elements subject to risk.

Key elements are usually more logical, functional elements: data and functions (or
services, or capabilities depending on context) that are essential to the business stakes
of the company, and therefore subject to security needs. Key elements depend on
targets for their implementation.

Requirements and Objectives are allocated to Essential Element and/or Target. To
ensure risk traceability, Objectives and Requirements must cover Risk(s). Objective
must be more general than Requirement, and to preserve traceability between those
concepts, we consider a bidirectional association named “satisfies” between them.

6 For readability, it is represented in the form of a conceptual model rather than a formal conceptual model.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 130/137

Figure 64 Conceptual model of Security Objectives an d Requirements in Security DSML

In current Security DSML, we distinguish three kinds of static models7 as shown by
Figure 65:

• The Requirement Model describes the specialization of Objectives into several
Requirements and links between those and the other elements of DSML (Risk,
Context).

• The Context Model describes System Architecture (Essential Elements and/or
Target), related constraints and links between those and the other elements of
DSML (Risk, Requirement).

• The Risk Model describes the risk characterization into threats, damages and
vulnerabilities and links between those and the other elements (Risk, Context).

7 The connectors between entities are not represented here for readability sake

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 131/137

Figure 65 Security DSML Static Model description

Figure 66 shows how to realize the mapping between Thales Security DSML (or Other
DSML for Need Analysis) and DOORS T-REK, to do this we must consider a
Traceability relation between Security Goal of Security DSML and DOORS
Requirements.

This relation enables to connect other kind of requirement (Safety, Maintainability,
Cost, etc.) with Security Goals expressed in DSML. Requirements are stored in a
common requirement Database (DOORS Database). This communication is realized
via a Model Bus (Bidirectional interface XML to DXL8) for Traceability needs between
DOORS and Security DSML.

Figure 66 Mapping between DSML and DOORS

8 DXL (DOORS Extended Language) is the native language of DOORS

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 132/137

This connection enables to represent risk defined in DSML into a requirement attribute
(Related Risk) and to connect Related Threat and Vulnerability into a component
attribute. It’s so possible to represent risk into DOORS objects.

Figure 67 presents the extended conceptual model including DOORS connections.
Two kinds of entities are mapped with DOORS: Requirements and Target that are
respectively represented by Requirement and Product Breakdown Structure object in
DOORS. To ensure traceability between DSML and DOORS, we add a PUID (Product
Unique IDentifier) attribute, PUID is the reference name of a DOORS object.

Figure 67 Extended Conceptual model including DOORS c onnections

Figure 68 depicts the properties view on Security Objective O6 (Identifiers should be
chosen so that they do not compromise user‘s privacy). Figure 69 presents the
requirement derived from security objective in DOORS.

Figure 68 Close view on the Security Objectives

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 133/137

Figure 69 Derived Requirements expressed in DOORS

The information of target can be consulted in the Properties View (Description,
constraints applied on it), as can be seen in Figure 70. This properties view of Target is
also defined in DOORS as shown by Figure 71.

Figure 70 Properties of the Database Server in DSML

Figure 71 Database Server description in DOORS

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 134/137

A.4. THE THALES CHANGE MODEL
This Section introduces the industrial Change Model used by Thales. The concepts
discussed here provided partial inspiration for the proposed generic change model in
Section 7.1, as well as the change control model in 7.2. At certain points in the text we
indicate the equivalent terminology in the Generic Change Model of WP3 (Section 7); a
detailed table of corresponding concepts is located in Section 7.3.

A.5. CHANGELINE CONCEPTUAL MODEL
Changes are typically managed by a process, which is typically assisted by a change
management system. When security-related changes are considered, the process
must include the state of models with respect to validation and assessment of security
goals. An orthogonal dimension is how to help human to manage the dashboard status
of the security of the overall achievement, during which errors are allowed to be fixed
and issues are allowed to be addressed. Resolution of such issues may lead to
addressing the target of a security risk at the design level. In other words, the
vulnerability of the specification can be associated with a particular risk factor in
satisfying certain security goal.

To represent traceability between changes and versioning of change, Thales has a
further conceptual model: a Change Model is composed by several Change Lines. A
Change Line is considered as set of Changes and Change Transitions to preserve
links and grant consistency between successive changes which compose a Change
Line. Change is caused by a Change Trigger (e.g. discovery of a fault or a new
threat); this concept corresponds to Change Event defined in Section 7. The ‘contents’
of the change is documented in a Change Request, that describes what and how
should be changed; in the terminology of the SecureChange change model in Section
7, this is equivalent to the Opaque Change Step of a Requested Change as defined by
a Human Actuator. It’s possible to activate a Change Trigger by a threshold defined in
an Evolution Function (Change Sensor in the terminology of Section 7) which
monitors the static model of the system. Evolution functions enable to represent
Continuous Perspective of change. Change Lines enable to represent both the
maintenance perspective and the before-after perspective.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 135/137

Figure 72 DSML Change Model conceptual model

A.6. CHANGEREQUEST CONCEPTUAL MODEL
As shown by Figure 72, a Change Request contains a PUID to identify it and a status
representing the state of Change request. After the activation of Change Request by
the Change Trigger, Change Request status is first defined in CCB (Configuration
Control Board). The configuration (or change) control board (CCB) is a meeting
between all actors of a development team (client, manager, quality, design, integration,
…) to define the change request status (e.g. accepted, refused or postponed in the
next version of system). The detailed behavior of Requirement Change Request is
described in next section.

To instantiate a Change Request inside different models, we have specialized it in
three kinds:

• A Requirement Change Request modifies the Requirement Model
(Requirement, Objectives). It’s possible to map this kind of Change Request
with DOORS Change Request.

• A Context Change Request modifies the Context Model (e.g. system
architecture).

• A Risk Change Request modifies the Risk Model (Risk, Threat, Damage,
Vulnerability).

These three kinds of Change Request are dependants; a Requirement Change
Request could impact on Risk Change Request and Context Change Request and vice
versa. This is why we consider a traceability relation between those Change Requests.
This relation is described by an association called “impacts_on” (see Figure 73).

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 136/137

Figure 73 DSML Change Request Conceptual model

A.7. BEHAVIOR OF CHANGE REQUEST
For the sake of readability, the generic Change Request Behavior is described by UML
Statechart Diagram (see Figure 74a). We present on the one hand the generic
behavior of Change Request including CCB status relations. On the second hand we
describe the specific behavior of Requirement Change Request.

A Change Request (CR) starts after Change Trigger activation (e.g. discover a fault, a
new requirement, etc.). Redactor of Change Request must define the change and trace
it with the impacted elements. Change Request is as default in Pending State.

A CCB must be planned; it monitors the Change Request Status which could be in the
following states:

• Refused, CR is not relevant; it is not integrated in system. Change Request is
ended in this state. In SecureChange terminology (Section 7), the Planned
model version becomes Abandoned.

• Postponed, CR is relevant but it’s not possible to integrate it in the current
version of the system. This CR is planned for the next version. CR returns in
Pending State during this system version. In SecureChange terminology, this is
not distinguished from the case where the CR is refused and later an identical
CR is accepted,since the focus is on managing the changes of the model and
not the CR process.

• Accepted, CR is integrated in current version of system. In SecureChange
terminology (Section 7), the Planned model becomes Realized.

If CR is accepted, it will be In_process macro state. This macro state is specialized for
several DSML Models (Risk, Requirement or Context).

CR is finish if and only if it’s closed in CCB with client agreement.

 D.3.2 Methodology for Evolutionary Requirements | version 3.18
| page 137/137

Figure 74 Change Request Status Behavior (a) generi c (b) requirements-specific

Specific Requirement Change Request (RCR) Behavior starts after Accepted state
in generic behavior. As shown by Figure 74b, Requirement Change Request Status is
represented by the sequence of following states:

• To_be_Managed, redactor of Requirement Change Request must take into
account impact of this change request with the other elements (Risk and
Context) and change them if necessary with new CR(s).

• In_progress, redactor must define changed requirement, designer must
models them, and developer must implement them.

• To_be_verified, integrator must take into account these changes in test
campaign (and change test scenario if necessary).

• Resolved, RCR Status will reach this state if and only if changed requirement
are verified in test campaign.

