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Executive summary 

Long lived software systems evolve as their environment changes. When a change 
happens, security concerns need to be analyzed to re-evaluate the impact of the 
change on the system and on the assumptions about environmental properties. 
Typically, change requests are handled in an ad-hoc way: requirements are described 
informally in natural language, which is prone to ambiguity and uncertain traceability to 
the evolving design. There is no explicit means to analyze changes with respect to the 
security goals underlying the evolution of the system design.  

To address these problems in a repeatable and systematic way, we have 
developed and adopted an iterative security methodology for evolving requirements 
(SeCMER). Every iteration of the SeCMER process starts with an elicitation stage that 
analyzes every change request or risk assessment into incremental changes of 
requirements models. These models are represented using consistent, state of the art 
modeling languages, such as Tropos and Problem Frames. Through a unified 
extension of existing Security Goals frameworks (e.g., Secure Tropos and Abuse 
Frames) it is then possible to represent specifications in such a way so as to reveal 
vulnerabilities through a systematic argumentation analysis, based on the facts and 
rules about domain properties. Using the propositions in the requirements model, the 
argumentation process analyzes whether the design has exploitable vulnerabilities that 
might expose valuable assets to malicious attacks. Facts and domain rules that help 
identify a rebuttal to the security goals are mitigated by introducing induced changes of 
security properties from the SeCMER conceptual model.  In addition to the structured 
approach to handling change, the SeCMER approach incorporates incremental 
transformation of requirement models based on evolution rules. Every evolution rule 
can be specified formally by events, conditions and actions (ECA). Whenever a change 
to the requirement model matching some evolution rule(s) is detected, the 
transformation engine applies specified actions on the requirement model and check 
whether the existing security goals are still satisfied after the change. If not, the change 
the passed onto the argumentation process, in order to consider whether the security 
goal can be restored. When even that is not possible, the security goal will be passed 
back to the elicitation process where the goal will have to be renegotiated and 
reformulated.  We illustrate the SeCMER methodology and its iterative process through 
a concrete example of evolution taken from the ATM domain. The example includes: 
the SeCMER models before and after changes of introducing the Arrival Manager tool 
and the SWIM communication system; the argumentation analysis for the security goal 
of protecting SWIM information from unauthorized access; and the example of 
evolution rules to generalize automatable monitoring and adaptation to the triggering 
and reactive changes to the SeCMER models.  

The SeCMER methodology is not stand-alone: it is integrated at the conceptual 
level, process level and the tool level with other methods and techniques developed by 
the SecureChange project. This report discusses how the SeCMER methodology 
integrates with other SecureChange approaches dealing with the process, architecture 
and risk. The integration with design and testing are described in respective work 
packages. At the end of the report, we present the state of practice in processing 
security requirements, which will be improved by adopting the SeCMER. 
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Position of the deliverable in the project timeline  

The main artifacts of WP3 are the SeCMER conceptual model, the SeCMER 
methodology for changing requirements, and a CASE tool prototype that supports the 
different steps of SeCMER methodology. Considering the SecureChange project 
timeline depicted in the following figure, the SecMER conceptual model and the 
SeCMER methodology have been conceived during the M0-M24 timeframe, while the 
CASE tool is going to be developed during the M24-M36 timeframe. The SeCMER 
methodology presented in this report belongs to the timeframe M0-M24.   

 

 

Validation 

The WP3 artifacts are SeCMER conceptual model, the SeCMER methodology for 
changing requirements, and a CASE tool prototype. Each of these artifacts is subject to 
the validation activities in SecureChange.  

The validation activities have not started yet and will be carried out during the third year 
of the project by organizing a dedicated workshop with ATM experts. For the purpose 
of the validation, we will use the process level change and the organizational level 
change and the security properties information protection and information access. WP3 
uses also the POPS case study, but to a lesser extent to illustrate the integration with 
testing. The change requirement that is addressed is specification evolution, and the 
security property is life-cycle consistency. 

 

Integration 

The strategic position of WP3 in terms of case studies and integration with technical 
artifacts of the other work packages is shown in the figure below. The ATM case study 
serves as the example for demonstrating the integration with artifacts of WP2, WP4, 
and WP5. The POPs case study is used for exemplifying the integration with artifacts 
of WP7. 
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WP3-WP2. The integration link between WP3 and WP2 is described in this report and 
in D2.2. The integration is both at artefacts and at process level. The SeCMER 
conceptual model of the evolving requirements is a specialisation of the Requirement 
Model package of the Integrated Meta Model presented in D2.2, while the SeCMER 
methodology steps are an instantiation of the Overall Process. The integration is 
demonstrated based on the ATM case study, addressing the organization level change 
and the security properties of information protection. 

WP3-WP4. The integration link between WP3 and WP4 is reported described in this 
report and in D4.2. The integration shows how UMLseCh can be used to help with 
verifying that requirements are actually met by a system and that they are complete 
with respect to high-level security objectives. The integration is demonstrated with the 
ATM case study, addressing the organization level change and the security properties 
of information protection and information provision. 

WP3-WP5. The integration link between WP3 and WP5 is described in this report. The 
integration is both at conceptual level and at process level. At the conceptual level, an 
integration of concepts is presented and it is explained how requirement model artifacts 
should be mapped to risk model artifacts and vice versa. The process level integration 
leverages on the conceptual level integration for the integration of the requirements 
elicitation and risk assessment methodologies. The integration is demonstrated in the 
ATM case study, addressing the organization level change and the security properties 
of information protection and information provision. 

WP3-WP7. The integration link between WP3 and WP7 is described in this report. The 
integration is both at conceptual level and at process level. At the conceptual level, an 
integration of concepts is presented and it is explained how requirements artifacts 
should be mapped to test artifacts and vice versa. At the process level, the integration 
of requirements methodology and testing methodology is described.The integration is 
demonstrated based on the specification evolution change requirement of the POPS 
case study.  
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1 Introduction 

Long-lived software systems often undergo evolution over an extended period of time. 
Evolution of these systems is inevitable, as they need to continue to satisfy changing 
business needs, new regulations/standards and the introduction of novel technologies. 
Such evolution may involve changes that add, remove, or modify system behavior; or 
that migrate the system from one operating platform to another.  These changes may 
result in requirements that were satisfied in a previous release of a system not being 
satisfied in its updated version.  

1.1 Challenges of Evolution 
When evolutionary changes violate security goals, a system may be left vulnerable to 
attacks [22]. Dealing with changes to security goals poses several challenges, 
including: 

• Ad hoc elicitation of security goals . Most security goals are implicit or are 
added after security violations have happened, which makes it difficult to 
prevent security problems and address vulnerabilities in a proactive way. The 
SecureChange Methodology for Evolutionary Requirements (SeCMER) 
described in this report provides a conceptual model and a process for making 
the elicitation of security goals systematic.  

• Imprecise modeling of requirements . Security requirements, in order to 
support automation support, demand a formal description that can be used to 
analyze, argue and evaluate. Vaguely expressed informal natural language 
descriptions are difficult for automatic functions to give an assessment of the 
problem and to provide useful mitigation advices. SeCMER provides a light-
weighted approach to formalizing and reasoning about changing security goals. 

• Limited analysis of the impact of change . Even when changes have 
happened systematically, there are no mechanisms to argue formally about 
these changes with respect to the domain knowledge of the system. Will the 
system collapse due to a subtle change of a trust assumption, for example 
about the system boundary? Can the system respond to the introduction of a 
new fact or domain knowledge that often invalidate the existing justification of 
security? SeCMER offers an approach based on argumentation and model 
transformation to reason about the impact of change. 

• Lack of an integrated approach . Change management of security 
requirements is often not integrated with risk modeling tools. Addressing this 
limitation requires an explicit mapping between the changes of security 
requirements and the system vulnerability in order to assess their impact on the 
system-to-be. When requirements tools such as DOORS and risk analysis 
methodologies and tools are not integrated, mitigation is often a late response 
to continuous evolution of software systems. Integration of our methodology 
with other work packages such as WP5 (Risk Assessment) addresses this 
issue. 
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The above difficulties are intertwined in the process of requirements engineering for 
secure software systems. When addressing these challenges, we propose to start with 
a well-known engineering principle that is simple enough to deal with different 
requirement modeling approaches, while at the same time it allows for the high-level 
analysis of the changes. 

1.2 A Framework for Requirements Evolution 
According to Zave and Jackson [27], requirements engineering involves the 
understanding of the given, or indicative, domain properties in the physical world W 
and the specifications of the machine S, in relation to requirements R, which described 
the required, or optative, properties.  These relationships between properties establish 
a structure in order to facilitate the problem analysis. They are captured by the 
entailment: W, S ├ R. Based on the work of Zave and Jackson [27], Gunter et al [13] 
propose a reference model for requirements engineering. This report extends the work 
of Gunter et al [13] in two ways: first, it show describes the relationships between 
evolving artefacts, and second, it introduces the security-related notions into the 
framework. 

1.2.1 Relationships between evolving artefacts 

This section gives a description of the requirements evolution through relationships 
between evolving artefacts. These relationships highlight several properties, including 
the assurance that the modified system can maintain all the existing security goals 
while new security properties need to be introduced to accommodate changes1.  

Gunter et al [13] identifies five artefacts in system development -- domain knowledge 
(W), requirements (R), specifications (S), programs (P) and the programming platform 
or computer (C) -- and describes their general relationships using the logical entailment 
operator (├) as follows. 

W, S ├ R 

C, P ├ S 

The first entailment (W, S ├ R) differentiates between specifications S and 
requirements R by suggesting that the specifications, within a particular physical 
(world) context W, imply R. In other words, specifications rely on explicit domain 
properties in satisfying the requirements. In practice, stakeholders give descriptions of 
R and S. A problem, in this view of requirements engineering, is the challenge of 
obtaining a correct specification from the stakeholders. 

Similarly, the second entailment (C, P ├ S) differentiates between programs P and 
specifications S by suggesting that programs, on a particular computing platform C, 
imply specifications. Programs, therefore, rely on properties of the programming 
platform in satisfying the specifications.  

We view the strength of the logical entailment operator in these formulae to be non-
prescriptive: it means that the artefacts (W, R, S, P and C) may be described in varying 

                                                        
1 This subsection is based on our paper [25]. 
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degrees of formality, from statecharts, temporal logic, etc. to natural language. 
Likewise, showing that an entailment relationship holds for some given artefacts also 
may be done to different degrees of formality, from mathematical proofs to informal 
arguments, depending on the description language chosen and the specific needs of 
the stakeholders. When formal description languages are used, the proof can be done 
through logical deduction. 

In this sense, the two entailments provide a general framework for establishing and 
maintaining traceability links from requirements to program code, by factoring out 
properties of the world and the programming platform. Additionally, the entailments 
help define responsibilities of various stakeholders. In broad terms, the first entailment 
is the responsibility of requirements engineers, and the second entailment is that of 
developers. 

Finally, problem structures of software to be developed from scratch have different 
characteristics from those of software to be developed incrementally by modifying and 
extending an existing system. In the latter case, appropriate representation of the 
existing program as a partial solution to the future problem poses an important issue. 

In a typical evolutionary development project, there is an existing solution that satisfies 
current requirements. In particular, there is a problem Rnow in the present state of the 
world Wnow, and a specification of the current machine, Snow, to solve the problem such 
that: 

Wnow , Snow ├ Rnow     (1) 

The current program Pnow, implemented on a particular computer, Cnow, satisfies the 
specification Snow: 

Cnow , Pnow ├ Snow      (2) 

 

Customers of this system want a new system in future, so that: 

Wfuture , Sfuture ├ Rfuture      (3) 

 

and the new system continues to satisfy requirements for the existing system: 

Wfuture , Sfuture ├ Rnow      (4) 

 

This entailment (4) captures an important property of systems in evolutionary 
development because its invalidation can tell us whether an existing security goal has 
been denied by the proposed system.  

Customers need a new program, either on the same or a different computer -- we 
restrict ourselves to the former in this work -- which satisfies the future requirements as 
specified in Sfuture: 

Cnow , Pfuture ├ Sfuture     (5) 

 

Importantly, developers do not wish to develop the system from scratch -- that is to 
say, refine Rfuture to Pfuture. Rather, they wish to reuse Pnow. 
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A key question evolutionary development needs to address is that of representing the 
existing solution. If we take a rather formal view of the development, we may use the 
following process. First, obtain the new requirements Rnew, so that Rnow, Rnew ├ Rfuture. 
Since Pnow is already implemented on Cnow, describing Pnow running on Cnow as some 
given properties of Wfuture means (i) Pnow is reused as it is (ii) Snew (or specification for 
Rnew) has to acknowledge the existence of Snow and takes into account potential 
concerns that may arise from when implementation of Snew is composed with Pnow. 

For example, there could be shared variables between Snow and Snew, and 
implementation of Snew must not invalidate assumptions Snow has on those shared 
variables. Taking such concerns into account, refining Snew to Pnew will lead to a 
program that will compose with Pnow, producing the required Pfuture. 

This view assumes (i) developers do not modify Pnow and (ii) Pnew may be delivered in a 
single increment. Architecture of certain software such as product-line applications may 
allow these assumptions, but for other systems, these assumptions are not practical. 
The alternative approach suggested here recognizes that in evolutionary development 
projects, Pnow is usually modified and Pnew is rarely built in one increment. 

Allowing Pnow to change offers potential benefits. For instance, if the developers know 
that a complex problem can be solved using the Model-View-Controller (MVC) pattern, 
the problem maybe decomposed in such a way that the sub-problems map to 
components of MVC. 

It should be recognized that Pnow may be a piece of software that has evolved over 
time, and its current structure may not facilitate eventual composition with Pnew. 
Therefore, structural changes to Pnow to improve its modularity often simplify 
composition. As well as the benefits, there are potential risks: it is often difficult to 
understand the full impact of a particular change. 

In the next section, we present in more detail the different entities and relationships to 
represent the security goals and requirements and the propositions to reason in the 
argumentation process. 

1.2.2 Security-related notions 

The challenges of addressing evolving security goals arise from multiple facets of 
engineering problems. Existing methodologies deal with the changes in security goals 
with different focuses. For example, Secure Tropos have been used to model both 
functional and non-functional requirements of stakeholders as security goals [20]. By 
modeling the delegation and trust relationship among these stakeholders, security 
problems of a social-technical system are elicited and reasoned about at a high level. 
On the other hand, Problem Frames [15] approaches for security (e.g., abuse frames 
[18, 19]) focus primarily on modeling the relationship between the attacker behavior 
and system properties. Although individually these approaches are powerful in 
modeling and analysis of different perspectives of the security problems, it is not clear 
how the synergy between them can be exploited. 

We extend the framework of Gunter et al [13] to address security concerns by 
considering the security-related concepts such as assets, threats, vulnerabilities, 
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attackers, trust assumptions, risks and satisfaction argumentation [12], as well as risk-
related concepts such as threats, assets and damages. 

1.3 Overview of SeCMER 
Based on the framework presented in the previous section, this report proposes the 
SecureChange Methodology for Evolutionary Requirements (SeCMER).  

In Figure 1, the diagram summarizes the proposed SeCMER process for handling 
evolutionary requirements in secure software systems.   

 

Figure 1 An Overview of SeCMER 

The inputs to the process in the SeCMER methodology are: 

• Change Request : Informal requests for change made by users and customers of 
the secure software system. These requests are typically managed using tools 
such as Issue Tracking systems. 

• Risk Assessment : Risks analysis can produce risk treatments that are candidates 
for requirements and change. 

• Existing System Designs : Artifacts describing the main components of the 
systems—software, hardware, and people—their configuration, behavior and 
properties. They may be documented using natural language text, UML diagrams, 
or formal descriptions. 

• Requirement & Change : Statements of properties, including security goals, the 
existing system satisfies, together with the changes that need to be made to the 
existing requirements model. When changes are implemented, it is necessary to 
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check whether properties of the existing design are satisfied by the new design, 
and if not, formulate properties that need to be satisfied by the new design. 

Focusing on security, the main output from the methodology is therefore either an 
assurance that the changes did not make the system violate the existing properties, or 
a formulation of new properties for the new design, namely the Security Properties to 
be implemented by the new design. Event-Condition-Action evolution rules discovered 
during the argumentation process can be used to monitor certain changes that can be 
handled automatically. 

The proposed methodology for handling change has three main steps:   

1. Requirements Elicitation : When a change is proposed through a change 
request or risk assessment, the existing design is examined to (a) identify the 
context of the proposed change, (b) check whether the proposed change is 
necessary. In terms of the framework described previously, this stage 
establishes Wfuture and Rfuture. A conceptual model of static requirements (see 
Section 2 for guidelines) supports this step. 

2. Argument Analysis : This stage checks whether there are new security 
properties to be added or to be removed (∆ Security Properties) as a result of 
changes in the requirement model. Furthermore, a high-level and long-term 
feedback is possible, in order to adapt/update evolution rules in a way that more 
human effort can be saved by automation in the future. This stage derives the ∆ 
Security Properties (∆sp) so that ∆sp U Snow ├ Sfuture. This stage is supported by 
the conceptual model of argumentations presented in Section 3. This stage may 
be carried out either before or after the evolution stage. 

3. Requirements Evolution : This stage monitors any changes made to the 
requirement model, and when changes that match the patterns of evolution are 
detected, predefined transformation is applied to the requirements model.  The 
transformation will automatically establish whether the existing security 
properties have been broken by the change or not. This stage checks the 
entailment (4) in the previous section, namely that Wfuture, Sfuture ├ Rnow. A 
conceptual model of evolution (Section 7), and automated transformation 
(Section 4) support this step.  

In practice, there are likely to be several change requests at a time, and these requests 
have to be stored, prioritized, scheduled, resourced, implemented and tested. 
However, these issues are outside the scope of SeCMER. 

1.4 The ATM Example 
Since this report focuses the on process level change requirement and the information 
access and information protection properties, the scenario fragment we are going to 
consider is transmission of FDD (Flight Data Domain) data to the AMAN (Arrival 
Management system) via the new communication network. We want to focus on how to 
enforce access control policies on FDD transmission   and how to ensure 
confidentiality of FDD.  In terms of security means, we are going to apply the SeCMER 
methodology for requirement change management to the ATM case study. We will 
produce SeCMER models before and after changes of introducing the Arrival Manager 
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tool and the communication network and the argumentation analysis for the security 
goal of protecting FDD from malicious attack. 

1.5 Structure of the report 
The structure of the remainder of the report follows an iteration of the SeCMER 
methodology, which includes three main steps: Requirements Elicitation, Requirements 
Evolution, and Argumentation Analysis. Section 2 presents the detailed conceptual 
model and the process used in SeCMER. Section 3 explains the argumentation 
framework for analyzing the security goals and their changes. Sections 7 defines the 
change model, and Section 4 discusses how the process of change can be automated 
using the incremental model transformation technique. Application of SeCMER to the 
ATM example is provided in Section 5. Section 6 presents how SeCMER is integrated 
with the SecureChange approaches to process, architecture, risk, design and testing. 
Various concepts associated with the notion of change are discussed in Section 7. 
Conclusions can be found in Section 8. 
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2 Requirements Elicitation  

The first step of SeCMER methodology is the elicitation of the security goals the 
system-to-be should be built on, as highlighted in the following figure.  

 

Figure 2 An Overview of SeCMER (Requirements Elicitati on) 

A basic concept that comes into play when eliciting security goals is the concept of 
asset. Assets are target of attackers who perform malicious actions, meaning attacks, 
by exploiting the vulnerabilities of the system. Malicious actions compromise security 
properties of the system-to-be such as confidentiality, integrity and vulnerability. 
Security goals are, thus, elicited by applying a specific security mechanism to protect 
an asset from harms that violates a security property.  

To identify the security goals of a system it is, thus, crucial to model the assets of the 
system, the need to protect the assets, the malicious intentions of an attacker that can 
deny the security goals, the malicious actions the attacker carries out, the 
vulnerabilities the attack exploits, and the negative impact on the assets of the system. 

The SeCMER methodology’ security goals elicitation step produces a requirements 
model which is an instance of the SeCMER conceptual model. The conceptual model 
identifies a set of core concepts that allow linking the empirical security knowledge 
such as information about vulnerabilities, attacks, and threats to the stakeholder’s 
security goals. To create this link, the conceptual model amalgamates concepts from 
Problem Frames (PF) [15] and Goal Oriented requirements engineering methodologies 
(GORE) [17, 26] with traditional security concepts such as vulnerability and attack. The 
combination of the two security goals engineering approaches has several advantages: 
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with GORE analysis, malicious intentions of attackers can be identified through explicit 
characterization of social dependencies among actors; with PF security goals analysis, 
valuable assets that lie within or beyond the system boundary can be identified through 
explicit traceability of shared phenomena among physical domains and the machine 
itself.  

2.1 The SeCMER conceptual model 
The most general concept is World, which has as instances all the things that can exist 
in the world.   Lower levels of the conceptual model include concepts from GORE, PF 
and argumentation frameworks, with security concepts occupying the lowest strata of 
the conceptual model. Key among the concepts that are introduced is the concept of 
Proposition, with instances such as ``Want for customers for our business" and ``Paolo 
is married``. The other key concept is that of Situation, representing a partial state of 
the world, e.g., ``High oil prices``, or ``Unhappy customers are many``. 

 
Figure 3 Security Requirements Conceptual Model 

A proposition is an object representing a true/false statement. A situation is a partial 
state of the world described by a proposition (its description in [11]). Arbitrary 
propositions are true/false/undefined in a situation, given its partial world status. The 
status of the world is expressed by a predicate over the entities involved.2 

Situations can have structure consisting of relationships and things standing in those 
relationships. Some entities and relationships according to the common sense always 
satisfy certain predicates, making them strong beliefs or trust assumptions.  

Thus, the entities and relationships are modeled to reflect the predefined assumptions 
about the world being modeled. 

                                                        
2 Note that predicates are a special form of propositions, and through reification they can be 

grounded into sentences of propositions. 
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Domain . Domain is specialized into Actor, Action, Asset, and Resource.3 An actor is an 
entity that can act and intend to want or desire.    

An action is an entity performed by an actor, which can generate events, and can have 
preconditions and post-conditions. Attack (not shown in diagram) is an action that may 
be carried out by an Attacker. A resource is an entity without intention or behavior. An 
asset is an entity of value that can be owned and used. For example, an asset can be 
an passenger (actor) whose life needs to be protected, can be an engine (process) 
whose behavior has a value to the protector, or can be an aircraft (resource) whose 
value are tangible for other actors. A relationship such as the organization chart of the 
air traffic management organization is also an asset as long as its value needs to be 
protected. 

Relationships . Enumerations of Relationship include do-dependency, can-
dependency and trust-dependency adopted from Secure Tropos. These are all ternary 
relationships between two actors and an asset. In addition, there are many binary 
relationships that characterize other concepts in the conceptual model. For example, 
actors are entities that want goals and carry out actions. Uses, and provides 
relationships are also included in the conceptual model. AND/OR refinement is a 
relationship between a goal and two or more other goals that indicates that a goal can 
be refined into sub-goals. Provides is the relationship from an actor to a resource, 
specifying that the actor provides the resource. Uses is the relationship from a process 
to a resource denoting that the process generates or consumes the resource. Fulfills 
relates an entity to a goal that the entity fulfills.  

For the sake of security goal analysis, the conceptual model includes also the following 
types of Relationship: argues, and interfaces. Argues is necessary to show whether 
certain requirements can be met or not. Interfaces are links between domains. A 
complete list of all the possible relationships is found in Figure 3. 

Propositions . A goal is a concept found in GORE approaches, and represents a 
proposition an actor wants to make true. For security analysis purposes, Goal is 
specialized into Requirement, and Security Goal. A requirement is a goal wanted by a 
stakeholder. A security goal prevents harm to an asset through the violation of 
confidentiality, integrity, and availability security properties [14]. 

Situations . The Domain concept coming from PF approaches is a specialization of 
Situation. This concept is useful to define the situation of system boundaries, to allow 
one place focus on analysis and to hide the unnecessary details. For the analysis of 
every problem or sub-problem, a different situation may be selected from the physical 
world. Thus the context is a situation in which the system-to-be will operate; and a 
domain is a situation that is part of the context. In PF, domains can be classified as 
biddable, causal, and lexical.  By biddable, a domain's behavior is not fully predicable 
or controllable, usually represented by human actors or natural processes. By causal, a 
domain's behavior is predicable or controllable, usually represented by activities. By 
lexical, a domain's behavior is predefined, usually by a resource.  

 

                                                        
3 Actor, Action, Process, Resource, and Asset  are concepts adopted from GORE  approaches. 
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Figure 4 Conceptual Model Representation in EBNF of xtext 

Figure 3 summarizes the elements of our ontology in Extended Backus-Naur Format  
(EBNF), supported by the Eclipse/TMF (xtext). Lines 1-2 introduce the default terminals 
and the URI identifier of the grammar. Lines 4-23 are EBNF rules, among which the 
first rule ‘Situation’ defines the root element of the model. An EBNF rule of the form ‘A: 
B | C’  indicates that the concept A has sub-concepts B or C as specializations. A rule 
of the form ‘A: B*’ indicates that each instance of A consists of (has parts) zero or more 
instances of B. The notation ‘B+’ is similar to ‘B*’, but allows for one ore more 
instances. Similarly the notation ‘B?’ indicates an optional element (zero or one), whilst 
‘[B]’ denotes a reference to B instead of an optional B. Furthermore, the string 
constants used in these rules are treated as preserved keywords in the concrete 
syntax, such as ‘actor’, ‘goal’, etc.  

The terminal ID (Lines 25-26) is an extension to the default ID in xtext. It identifies the 
domains and propositions using a space-separated free-formed phrase quoted by ‘#’, 
such as ‘#A security goal#’, instead of ‘a_Security_Goal’. 

2.2 The SeCMER requirements elicitation process 
The requirements elicitation process is an iterative process that consists of the 
following steps: 
 

1. Domain modeling  
2. Goal and Action modeling 
3. Trust modeling 
4. Delegation modeling 

The process starts with the domain modeling activity in which the relevant actors 
stakeholders and existing software (subsystems) are elicited and modeled with their 
goals.  

Goal and action modeling focuses on the goals/requirements associated with each 
actor in the actor diagram and analyzes them using various forms of analysis. In 
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particular, Means-Ends analysis aims at identifying actions, resources and goals that 
provide means for achieving a high-level goal. The Contribution analysis identifies 
goals that can contribute positively or negatively in the fulfillment of the goal under 
analysis. The AND/OR Decomposition analysis refines a high-level goal into AND/OR 
composition of sub-goals, resulting in a finer goal structure. During these analyses, 
new dependencies can be discovered so as to revise and enrich the model produced.  

Trust modeling consists of identifying actors who trust other actors for fulfillment of 
certain goal, actions, and resources, and identifying actors which own goal, plans, and 
resources. 

Delegation modeling consists of identifying actors which delegate to other actors the 
permission and task of execution on goals, plans, and resources.  

2.3 The ATM Example 
We now describe the ATM example of the scenario fragment relating to the 
transmission of FDD (Flight Data Domain) data to the AMAN (Arrival Management 
system) via the new communication network. First we produce SeCMER model before 
the introduction of the Arrival Manager tool and the communication network. 

 
Figure 5 A SeCMER requirement model capturing the rel evant domains before the change 

Figure 5 shows a SecMER requirement model fragment capturing the relevant 
domains before the changes. The model captures the given domains and their 
connections as they currently are in ATM domains. The diagram shows that the Airport 
Management system is connected to the Meteo Data Center and the Area Control 
Centre through interfaces ‘a’ and ‘b’ respectively.  ‘a’ and ‘b’ are point-to-point 
communication systems before SWIM is introduced. The the Airport Management 
system has several components, including the Arrival Management (AMAN) system. 

Figure 6 shows another SeCMER requirement model showing how the introduction of 
the SWIM Network, an IP based data transport network, changes the structure of the 
ATM components, together with a simple description of the interfaces between the 
components. In the after change diagram, the two specific legacy systems, namely, 
Airport Management and Meteo Data Center are connected through the SWIM 
network. This change, in a sense, replaces the interface ‘b’ with the SWIM network, 
SWIM boxes and adapters. The diagram also makes explicit the security goal that 
needs to be maintained after the change has been introduced. 
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Figure 6 A SeCMER requirement model after the change 
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3 Argumentation Analysis 

As discussed in the introduction, the satisfaction of security goals in the general form of 
the entailment W, S ├ R needs to be argued either semi-formally or formally [14]. 
Security goals are often a collection of claims whose satisfaction depends on a 
combination of facts, trust assumptions and domain knowledge.  Arguments may rebut 
and mitigate one another. This section describes the argumentation analysis step of 
the SeCMER methodology as highlighted in the following figure. 

 

Figure 7 An Overview of SeCMER (Argument Analysis) 

3.1 Overview 
Our argumentation is based on the informal Toulmin structures first published in the 
1950’s [3]. To consider it in the formal settings, however, we have simplified the 
conceptual models. The most important concepts in argumentation are defined as 
follows:  

• A claim is a predicate whose truth-value will be established by an argument.  

• An argument contains one and only one claim. It also contains facts and 
warrants. 

• A fact is a grounded predicate -- something that is either true or false where 
terms in the predicate must be constant. 
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• A warrant may be either facts or a trust assumption, an ungrounded predicate 
that can be evaluated to true or false once the values of all terms in the 
predicate are known. A warrant link facts in an argument to the claim. 

We now present a formalized meta-model of the arguments. 

3.2 Meta-model of arguments 
The meta-model of SeCMER arguments we implemented is described in Figure 8. 

 
Figure 8 Meta-Model of the Argumentation 

• An argument diagram may have several arguments linked to each other. 

• Every argument has an optional timestamp, which indicates the time (or the 
round) during the argumentation process at which the argument is introduced. 
For a given argument, an initial iteration is to establish the truth of its associated 
claim. The initial claim needs to be supported by some facts, and warranted by 
either further fact(s) or sub-argument(s). Since a warrant in an argument can be 
an argument, arguments can be nested. This allows high-level arguments to 
rely upon predicates the truth values of which are established by later sub-
arguments. Therefore, these sub-arguments are also arguments, but they are 
meant to provide supporting evidence (as sub-claims).  

• As well as internal nesting of arguments, arguments may be related to each 
other through rebuttal and mitigation/restore relationships. A rebuttal argument 
is a kind of argument whose purposes are to establish the falsity of their 
associated argument or make them inconsistent. Similarly, mitigations are 
another special kind of arguments following the iteration of rebuttals in order to 
reestablish the truth-value of the associated original claims. Mitigations may or 
may not negate the claims of the rebuttals: sometimes they add further facts 
overlooked by the rebuttals. In cases of arguments with several levels of 
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rebuttals and mitigations, it is desirable to show explicitly the original argument 
whose claim a mitigating argument is targeting at. For this purpose, the restore 
relationships are used between the mitigation relationship and the original 
argument. The arguments that introduce the rebuttal and mitigation 
relationships do not need to contain all the facts and rules. Only incremented 
facts or rules need to be kept in such follow-on arguments because they are 
always applied after previous arguments. Of course, throughout the 
argumentation, the same reasoning mechanism should be used consistently for 
all arguments. 

3.3 Visualizing SeCMER Argumentation 
We have extended the OpenPF tool4 to support the informal argumentation described 
by the meta-model in Figure 8. One aspect of the tool is to allow security engineers to 
document and visualize the argument structures before and after introducing a change. 

 

 
Figure 9 Textual Input Syntax and Visual Syntax of Se CMER Arguments 

The diagram in Figure 9 shows the input textual syntax and visual syntax of an 
argument in the OpenPF. An argument is represented as a node with three 
compartments. At the top of a node is a label indicating the ID and description of the 
claim, together with the timestamp (round number). The grounds are written as nodes 
inside the middle compartment and the warrants are written as nodes inside the bottom 
compartments. Warrant may be either a fact or an argument, thus allowing nesting of 
sub-arguments. 

                                                        
4 The tool and examples here can be downloaded from http://sead1.open.ac.uk/openpf/ and 

http://computing-research.open.ac.uk/trac/openre/wiki/Examples/argument/SecureChange  
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Figure 10 Visual Syntax of Links between Arguments 

Furthermore, in an argument diagram, there may be more than one argument, which 
are related to each other through rebuttal and mitigation links. Figure 10 illustrates 
these four links: rebuttal link is represented by a red dotted line, whilst the mitigation 
link is represented by a solid green arrow. Purple dashed arrows represent relationship 
between facts (or trust assumption) whose value has been negated in a rebuttal or 
restored by a mitigation. The optional solid pink arrow shows the rebuttal the mitigation 
addresses in restoring the initial argument, which is useful when there are several 
rebuttals to an argument and several mitigations to those rebuttals.  

3.4 Formally Checking Links between Arguments 
Once visualized in this way, arguments during the change process can be evaluated 
formally. To illustrate this point, in this section we use proposition logic as the 
underlying formalism, whilst Section 3.3 will extend the formalism to temporal logic to 
reason about the software behaviors. We have implemented the algorithm described in 
Figure 11, which uses the rule that for each argument the validity can be established 
by checking that Ground /\ Warrant → Claim assuming that Ground and Warrant are 
true. By adding and removing grounds and warrants in later rounds of arguments, the 
validity of the initial argument is rechecked. For each path in the argument structure, 
we first check the rebuttal arguments (lines 2-14) before checking the mitigation 
arguments (lines 14-24). 
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Figure 11 The algorithm for checking rebuttal and m itigation arguments 

We will now illustrate the idea of the algorithm using the example introduced in Figure 
9.   

1. Starting from the example root node A1, in Round #1, we have: 

W0 ⇔ (F1, A2 → A1)………//implicit in the A1 structure and W0 is a shorthand 

F2 → A2…………………….//implicit in the A2 structure 

F1, F2,W0 …………….……//grounds and warrant of A1 and A2 

2. Rebuttals negate the associated facts or the claims. By introducing the change 
in A3 at the round #2, for example, we have  
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3. W0 ⇔ (F1, A2 → A1)……//implicit in the A1 structure 

F2 → A2………………..…//implicit in the A2 structure 

F2, W0 ……….……………//removing F1 by A3 

F3, F4 ………………………// grounds of A3 

F3, F4 → A3 …………..……//implicit in A3 structure 

A3 ⇔ ¬ F1…………….…….// given in A3 structure 

It is thus possible to establish that  ¬A1 can be satisfied, which denies the original 
claim in A1. Thus A1 is rebutted by A3. Similarly, the changes introduced by A4 at the 
round #2 also rebut the claim of A1: 

1. A4 ⇔ (F1, A2, !F5 → A1)……//W0 replaced by A4 

F2 → A2………………………//implicit in the A2 structure 

F5 → A4………………………//implicit in the A4 structure 

F5 …………..…………………//ground of A4 

F1, F2 …………..……………//ground of A1 A2 

From these examples one can see that the claim of an argument may be rebutted in 
more than one way. 

A mitigation argument may negate the effect of a rebuttal by restoring the truth of the 
original claim. For example, after round #3 in A6, in relation to A3 we have 

1. W0 ⇔ (F1, A2 → A1) .…………… .……………//implicit in the A1 structure 

F2 → A2…………….…………….…………..…//implicit in the A2 structure 

F2, W0 ………….…………….…………………//removing F1 by A3 

F3, F4 …………..….…………….………………// grounds of A3 

F3, F4 → A3 ……….…………….………………//implicit in A3 structure 

A3 ⇔ ¬ F1……..…….………………………….// given in A3 structure 

A6 ⇔  (¬F5 & F2 & F8 & F6 & F7 → A1) ……//given in A6 structure 

F6, F7, F8 → A6 …...…………….…………… //implicit in A6 structure 

F6, F7, F8 ….…………….…………….………// grounds of A6 

¬F5….…………….…………….………………//not a given fact in A1, A3 and A5 

 

This partial argument shows that there is an outstanding rebuttal to argument about the 
system security after change. In particular, the rebuttal argument A4 needs to be 
mitigated in order to make the system secure after change. 
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3.5 Arguments and the conceptual model 
Arguments provide a way to structure the system artifacts involving the concepts in the 
conceptual model (Figure 3). Indeed, the conceptual model introduces the concepts in 
argumentation, but their relationships to other concepts are further explored now. 

Goals and requirements are generally regarded as claims, warrants are the context, 
and propositions, including the relationships, are the facts. Other domain concepts 
such as action, resource and actor are orthogonal to the propositions of an argument, 
in the sense that they can be used in the description of any part of an argument. 
Moreover, one can describe the behavioral semantics using the temporal predicates 
supported by the Event Calculus formalism, which is explored in the next section. 

3.6 Formalization of arguments using the Event 
Calculus 

First introduced by Kowalski and Sergot [16], the Event Calculus (EC) is a system of 
logical formalism, which draws from first-order predicate calculus. It can be used to 
represent actions, their deterministic and non-deterministic effects, concurrent actions 
and continuous change. We chose the EC formalism, because it is suitable for 
describing and reasoning about event-based temporal systems such as the Air Traffic 
Management systems. Several variations of EC have been proposed, and the version 
we adopted here is based on the discussions in [24]. The calculus relates events and 
event sequences to fluents, or time-varying properties, which denote states of a 
system. Table 1, based on [21], gives the meanings of the elementary predicates of the 
calculus we use in this paper. 

Table 1 Elementary Predicates of the Event Calculus 

Predicate Meaning 

Happens(a, t) Action a occurs at time t 

Initiates(a, f, t) Fluent f starts to hold after action a at time t 

Terminates(a, f, t) Fluent f ceases to hold after action a at time t 

HoldsAt(f, t) Fluent f holds at time t 

t1 < t2 Time point t1 is before time point t2 

 

The domain independent rules in Table 2, taken from [21], state that: Clipped(t1, f, t2) 
is a notational shorthand to say that the fluent f is terminated between times t1 and t2 
(EC1), Declipped(t1, f, t2) is another notational shorthand to say that the fluent f is 
initiated between times t1 and t2 (EC2), fluents that have been initiated by occurrence 
of an event continue to hold until occurrence of a terminating event (EC3), fluents that 
have been terminated by occurrence of an event continue not to hold until occurrence 
of an initiating event (EC4), and truth values of fluents persist until appropriate initiating 
and terminating events occur (EC5 and EC6). 
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Table 2 Domain independent rules of EC 

Clipped(t1, f, t2) ≡ Ǝa, t[Happens(a, t) /\ t1 ≤ t < t2 /\ Terminates(a, f, t)] (EC1) 

 

Declipped(t1, f, t2) ≡ Ǝ a, t[Happens(a, t) /\ t1 ≤ t < t2 /\ Initiates(a, f, t)] (EC2) 

 

HoldsAt(f, t2) ← [Happens(a, t1) /\ Initiates(a, f, t1) /\ t1 < t2 /\ ¬Clipped(t1, f, t2)] (EC3) 

 

¬HoldsAt(f, t2) ← [Happens(a, t1) /\ Initiates(a, f, t1) /\ t1 < t2 /\ ¬Declipped(t1, f, t2)] (EC4) 

 

HoldsAt(f, t2) ← [HoldsAt(f, t1) /\ t1 < t2 /\ ¬Clipped(t1, f, t2)] (EC5) 

 

¬HoldsAt(f, t2) ← [¬HoldsAt(f, t1) /\ t1 < t2 /\ ¬Declipped(t1, f, t2)] (EC6) 

 
In our approach to formalising the arguments, claims are constraints on the 
combinations of fluent capturing the required states of the system. System context 
captures the facts and warrants. We now define them more formally. 

 

Definition 5.1: Claims consist of a finite conjunction of (¬)HoldsAt predicates.  Reference 
phenomena (Γ) are observations describing the given state of the system, while 
controlled phenomena (Γ’) are observations describing the desired state of the system. A 
claim is expressed either as  

• ground observations Γ’, without any reference to the given state of the resource 
or given action of the processes, or 

• as a relationship between the reference and the controlled phenomena, such as 
a constraint of the form Γ→Γ’, or an action precondition axiom of the form 
(¬)Happens(f1, t) → Γ’ where the antecedent is an occurrence of an action in the 
system (for example, to say that when an event a1 happens at time t, the fluent 
f1 must be true at t1). 

For example, the claim HoldsAt(AircraftOnGround, t) /\ 0 <= t <= 9 says that the aircraft 
are on the ground between the timepoints 0 and 9 range; the claim  HoldsAt(Airborne, t) 
→ HoldsAt(TransponderOn, t) says that as long as the aircraft remains airborne, the 
transponder is on; and the claim Happens(BreachSD, t) /\ ¬Happens(Clearance, t2) /\ t <= t1 
<= t2 → HoldsAt(AlarmRaised, t1) says that as soon as the separation distance is 
breached, the alarm is raised until the clearance happens. 

 

Definition 5.2 : Facts are described as ground observations. 

 

Definition 5.3 : Warrants in this formalisation can be described in a number ways. 
Firstly, it can be expressed as a finite conjunction of the event occurrence constraints (Ψ) 
of the form (¬)Happens(a1, t) /\ (¬)HoldsAt(f, t) → (¬)Happens(a2, t) where a1, a2, t, and f are 
terms for the action, time point, and fluent respectively. 

Secondly, warrants may be expressed as event-to-condition and condition-to-event 
causality. The first causality deals with what happens to the fluents when events occur, 
and the second causality deals with the domain properties that lead to the occurrence 
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of certain events. In the Event Calculus, the event-to-condition causality is described 
as a finite conjunction positive effect axioms and negative effect axioms (Σ) of the form 
Initiates(a, f, t) ←Π or Terminates(a, f, t) ←Π where Π has the form (¬)HoldsAt(f1, t) /\ ... 
/\(¬)HoldsAt(fn, t) and t, and f1 to fn are terms for the time and fluent respectively. The 
condition-to-event causality is described as a finite conjunction of trigger axioms (∆2) of 
the form Happens(a, t) ←Π. For example, the following statement says that if the aircraft 
has transponder, an occurrence of the event interogateTransponder has an effect of 
making BroadcastACInfo true. 

Initiates(interogateTransponder,BroadcastACInfo, t) ← HoldsAt(HasTransponder, t) 

 
Similarly, the following statement says that the fluent OperatorHasWeatherInfo on 
becoming true, generates the event sendWeatherInfo because of the functionality 
SendWeatherInfo. 

 
Happens(sendWeatherInfo, t) ← HoldsAt(OperatorHasWeatherInfo, t) /\ 

¬HoldsAt(OperatorHasWeatherInfo, t -1) 

 
Note that the condition ¬HoldsAt(OperatorHasWeatherInfo, t-1) is necessary to prevent 
stuttering of the event sendWeatherInfo when the fluent OperatorHasWeatherInfo 
holds continuously. 

 

Definition 5.4 : Arguments in this formalism relies on two assumptions. One is the 
consistency of the domain theory Σ and observations Γ and Γ’. Another is the 
uniqueness of fluent and event names, meaning that no two names denote the same 
thing. This uniqueness axiom is represented by Ω. If the system relies on the feedback 
from the environment (∆2) and observations about the environment (Γ), an argument 
can be formalised as follows: 

 

Σ /\ Γ /\ ∆2 /\ Ψ ╞ Γ’ 

 

That is, given the facts (observations about the environment Γ), warrants (a theory of 
the domain Σ, feedback from the system environment ∆2, and a specification Ψ), and 
an appropriate deductive system, we want to show that the claim can be satisfied.  

 

Definition 5.5 : Rebuttals are counterexamples to the satisfaction of the claim, and are 
defined as follows. When restricted to event occurrences, rebuttals are found through 
logical abduction in the Event Calculus. We first pose a logical abduction problem in 
order to find all constructive hypotheses (∆1) explaining how, given the domain theory 
(Σ /\ Γ /\ ∆2), the claim (Γ’) can be denied, i.e. 

 

CIRC[Σ; Initiates; Terminates] /\ 

CIRC[∆1  /\ ∆2;Happens] ^ Γ ^ Ω ╞ ¬Γ’ 
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where ∆1 is consistent with the domain theory and CIRC is the circumscription operator. 
∆1 is a partially ordered sequences of event occurrences that, given the physical 
domains, leads to the claim not being satisfied. The circumscription operator assumes 
that no events other than those by ∆1 and ∆2 may occur.  

 

Definition 5.6 : Mitigations are facts and/or warrants that remove rebuttals from the 
argument, i.e. ∆1 above is empty. 

3.7 Arguments and the model transformation 
Claims can be general. For example, “The Arrival Management (AMAN) system from 
the air traffic management domain is safe and secure” can easily invite different 
opinions. To support such claims, one need to use the facts or domain knowledge 
specific in the field; to refute the supportive evidence for the claims, one can draw on 
additional (often non-monotonic or negative) facts and domain knowledge to form claim 
rebuttals. 

As a result, after argumentation analysis is done, one may turn the arguments into 
evolution rules as follows: 

• The facts and domain knowledge rules that cause a rebuttal argument are 
generated into a pattern that match the SeCMER requirements model; 

• The new facts and domain knowledge rules introduced by a mitigation 
argument (some of them are new security properties) are generalized into an 
incremental transformation where the “before” state of the transformation is the 
SeCMER requirements model before the mitigation, and the “after” state of the 
transformation is the SeCMER requirements model after the mitigation.  

Both the pattern and the incremental transformation may be represented explicitly as 
an evolution rule in the SeCMER methodology in hope that similar changes that may 
rebut the satisfaction of similar existing properties can be mitigated automatically.  

In case it is not possible to generalize, the instance level changes will be kept as trivial 
evolution rules that only matches with the exact situation and does the exact mitigation. 
Such trivial rules can still be useful to help a regression analysis.  

More detailed evolution rules as generalized mitigations can be seen in Section 6 and 
7. A detailed example of the argumentation analysis is given in Section 8, along with 
the application of the whole SeCMER methodology. 

3.8 Tool-support for formal argumentation  
An overview of the tool-support for argumentation in OpenPF is given in Figure 8.  
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Figure 12 An overview of OpenPF support for argument ation 

The workflow starts with the development of a security requirements model in the 
elicitation stage using the Situation ontology. The OpenPF plug-in ontology2argument 
generates structure of an informal template, which can be edited by the user. 
Requirements engineer uses the requirement model to sketch informal arguments for 
the security goals of the evolving system that will be affected by the proposed change. 
The informal arguments and the formalized requirements are then used by another 
plug-in, argument2ec, to generate arguments formalized in the Event Calculus. At this 
point, two kinds of reasoning can be performed on the arguments: logical deductive 
reasoning to check whether claims in the arguments are valid, and logical abductive 
reasoning to find rebuttals to the claims (see Definitions 5.4 and 5.5). Both types of 
reasoning are supported through the OpenPF integration of the Event Calculus tool 
decreasoner. 

3.8.1 ATM Example 

We now step through OpenPF support for argumentation using the ATM example 
introduced in Section 2.3. We begin by recalling the structure of the ATM system 
before the change is introduced (Figure 5). Note that the diagram shows the relevant 
domains and their connections as they currently are in ATM domains. The diagram 
shows that the Airport Management is connected to the Meteo Data Center and the 
Area Control Centre through interfaces ‘a’ and ‘b’ respectively.  ‘a’ and ‘b’ are point-to-
point communication systems before SWIM is introduced. 

Requirement 

Engineer 
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After applying the transformation rules to accommodate the change, the diagram in 
Figure 6 shows another SeCMER requirement model where the point-to-point 
communication between two specific legacy systems, namely, Airport Management 
and Meteo Data Center are replaced by with the SWIM network, SWIM boxes and 
adapters. The diagram also makes explicit the security goal that needs to be 
maintained after the change has been introduced. This corresponds with the Elicitation 
and Evolution Rules steps in Figure 12. 

ontology2argument is a semi-automated step where the requirement engineer uses the 
OpenPF tool to create information argumentation diagram. The information 
argumentation process may go through several rounds. At the beginning, the 
engineers assume that the current ATM is secure because of certain facts and warrant 
(Figure 13). 

 
Figure 13 Argument for Security of AMAN before chang e 

Introduction of the SWIM network as shown in Figure 6 adds new domains, facts and 
warrant which call for the argument to be revised. In particular, we have a new 
argument that rebuts the orginal argument that the AMAN is secure.  

 
Figure 14 Argument for Security of AMAN before chang e 
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Having discovered the vulnerabilities brought about by the proposed introduction of 
SWIM system, the requirements engineers and the security experts identify various 
ways to mitigate the rebuttal in order that the initial claim for AMAN security is restored 
(Figure 15). 

Having done the argument analysis, we discovered that the original requirement for 
system security, namely Protection of FDD (Flight Data Domain) info, couldn’t be 
maintained after the change has been introduced. Mitigations in the arguments led to 
discovery of additional security properties that need to be discharged in order to 
maintain the overall system security. Figure 16 shows a SeCMER requirement model 
for an additional security property. It stresses the necessity to change required security 
properties in order to accommodate changes while maintain the same security level. 
The introduction of the AMAN and the SWIM Network requires additional security 
properties. They include: ‘Queue Management Information shall not be accessible by 
meteo data centres’, or ‘Queue Management Information shall not be accessible by 
anyone other than those working with AMAN’. The structured SeCMER’s 
argumentation supports the verification of such additional properties. 

 
Figure 15 Argument for Security of AMAN after the mi tigations 

 

Figure 16 A SeCMER requirement model for a relevant S ecurity Property with respect to Changes 
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We now illustrate how the initial argument for the system security is broken, by 
generating counter-examples in the Event Calculus using the abductive reasoning of 
OpenPF. Our discussion will focus on the protection of FDD data, and in particular the 
Queue Management Information (QMI), of the Airport Management system. Since we 
assumed that the existing system before the change is secure, the FDD data is initially 
protected. In the event calculus, we will write:   

!HoldsAt(Accessed_FDD_data_SN(),0). 

For the current system, this property can easily be proven. What is of interest is to 
check whether the property remains true after the change has been introduced. To do 
this, we input the diagram in Figure 6 into OpenPF. Figure 17 shows the textual input 
to create the diagram in Figure 6. 

 

Figure 17 Textual input to create the diagram in Fi gure 6  

In the next step, we generate the diagram shown in Figure 6. We then invoke an 
OpenPF plug-in that generates the Event Calculus template for the above diagram. A 
partial template is shown in Figure 6. This corresponds with the argument2ec step of 
Figure 12. 
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Figure 18 The Event Calculus template generated by t he OpenPF tool  

In the next step, we describe the behaviour of the domains. For instance, to say that 
the Adapter B instantly forward FDD data from the Airport Management (via interface f) 
to the SWIM-Box B (via interface e), we write: 

[time] Happens(Send_FDD_data_8101_e(),time+1) <-> 
Happens(Send_FDD_data_7777_f(),time). 

Similarly, to say that the SWIM-Box B instantly publishes the information to the SWIM 
Network (via interface d) when it receives FDD data from the Adapter B (via interface 
e), we write: 

[time] Happens(Publish_FDD_data_d(),time) <-> Happens(Send_FDD_data_8101_e(),time). 

When the FDD data is published with the SWIM Network, the SWIM Network has the 
FDD data. 

[time] Initiates(Publish_FDD_data_d(), Has_FDD_Data_SN(),time). 

If SWIM-Box A has subscribed to the SWIM Network, and if the SWIM Network has the 
SWIM data when SWIM-Box A attempts to get it, then the FDD data has been 
accessed. This is described by the following rule.  
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[time,time1] Happens(Subscribe_SWIM_data_c(),time1) & (time1 < time) & 
HoldsAt(Has_FDD_Data_SN(),time) ->  
Initiates(Get_SWIM_data_c(), Accessed_FDD_data_SN(),time). 

Requests by Airport Management and Meteo Data Center for FDD data and Meteo 
data can be described in the same way. 

In the next step, we invoke the abductive reasoned the OpenPF tool to see if the 
security property !HoldsAt(Accessed_FDD_data_SN(),0) has been broken. The 
reasoner returns the two models shown in Figure 19. The first model says that the 
security property Accessed_FDD_data_SN() will become true, i.e. the security is 
broken, if the Airport Management publishes FDD data to the SWIM Network to which 
the Meteo Data Center has subscribed for FDD data. The FDD data available to the 
Meteo Data Center may be outdate because the Airport Management has published 
more FDD data since the Meteo Data Center has requested it. The second model is 
similar to the first: the difference being that the FDD data is most up-to-date. This 
corresponds with the Abductive and Deductive Reasoning step of Figure 12. 

 

Figure 19 Results of the abductive reasoning on the  change 
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4 Process Automation by Evolution Rules 

The SeCMER approach prominently features an automated step, as highlighted in the 
following figure.  

 

Figure 20 An Overview of SeCMER (Requirements Evolutio n) 

This work phase is carried out automatically by monitoring the existing requirements 
model (as well as other interconnected models) and reacting to applied changes. 
Declarative change management artifacts called Evolution Rules define when to 
intervene, and optionally how to react. With carefully specified evolution rules, the 
automated rule application can save significant manual effort, e.g. in the argumentation 
phase. 

Upon each change, reactions are performed iteratively as long as any evolution rules 
are still applicable. Therefore the requirement model serves both as input and output of 
this system component. Further inputs include the changes experienced by the 
requirement model, and the definition of the evolution rules themselves.  

Section 7.1 elaborates why and how evolution rules can be a useful contribution to 
SeCMER methodology. Section 7.2 presents some background knowledge from the 
field of model transformation, on which our proposed concept of evolution rules is 
based. Section 7.3 explains the conceptual model of Evolution Rules, while Section 7.4  
gives precise mathematical foundations.  
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4.1 Goals for the evolution rules 
There are at least three ways requirements modeling environments can benefit from a 
mechanism for automated (rule-based) reaction to changes:  

• Internal consistency checking and on-the-fly evaluation of well-formed 
constraints,  

• Synchronization against other models (risk analysis, design, etc.) and 
information propagation via model transformation techniques, 

• Saving human efforts by identifying the extent and influence of change to 
determine where manual change analysis and argumentation is needed, by 
preparing automatically deducible information for this manual reasoning, and 
possibly by complete automation of simpler, deterministic steps of the 
argumentation process.  

The task of constraint evaluation is not specific to requirements or security engineering, 
only to the actual conceptual models. Therefore it can be considered out of scope for 
SecureChange, and will not be discussed here in detail. Results of this approach are 
shown in [23]. 

Integration with other models outside the requirements scope is a future task for 
SecureChange, and will be discussed in upcoming deliverables. 

The current deliverable focuses on the third type of automation, which is specific to the 
domain of (security) requirements evolution, and closely tied to the methodology. We 
argue that requirement modeling environments should be equipped with a change 
sensor automatism that is capable of identifying the effects of the change and thereby 
reducing the amount of required human effort to deal with the change. We propose that 
Evolution Rules  be defined to accomplish the following: 

• By operating over an interconnected requirement model and argumentation 
model, evolution rules can identify cases when a change in the model 
influences an evidence in support of a previous argumentation activity, and 
consequently flag the argument for manual re-evaluation 

• Efficient identification of security goals whose satisfaction is implied by the 
model. Raise alerts (e.g. towards the argumentation staff) if a previously 
satisfied goal becomes unsatisfied (more precisely, if the satisfaction not 
provable anymore) due to changes in the model. Cases where the satisfaction 
of a rule can be determined automatically include the following: 

o There is already a valid (not flagged) argument, constructed in a 
previous argumentation session that decisively supports the satisfaction 
of the goal. 

o The goal is decomposed (AND/OR) into subgoals, and its satisfaction is 
implied by the satisfaction of subgoals. 

o In some cases, model entities connected in a certain way may 
automatically imply the satisfaction of the goal. For example, if the goal 
is delegated to an actor, who carries out an action that fulfills the goal, 
and there is no corresponding attacker with an anti-goal, than the goal 
can be considered satisfied without manual argumentation. Some of 
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these rules are expected to be domain-specific (e.g. ATM-only) and to 
emerge from the argumentation process by carefully scrutinized 
inductive optimization and rule formalization. 

o Similarly, it can be determined by given (possibly domain-specific) 
conditions that artifacts in other models (through traceability relations) 
automatically guarantee the satisfaction of the goals. 

• Automatically making decisions and deterministic changes to the requirements 
model, or instantiating several options (i.e. draft solutions) and offering them to 
the requirement engineers, if and when such automation is applicable. Once 
again, such rules are expected to be domain-specific (e.g. for ATM) and to 
emerge from the argumentation process by carefully scrutinized inductive 
optimization and rule formalization. 

The list above is not necessarily exhaustive, and while we will show a number of 
examples (see Section 8) some rules are expected to be specific to the application 
domain / case study. Therefore the focus is primarily at the proposed language and 
mechanism for defining and efficiently evaluating evolution rules.  

The framework and language for specifying evolutions rules for the security-related 
aspects of the engineering model should 

• support complex structural requirements that are difficult and error-prone to 
oversee manually; 

• allow the capturing of change events in terms of similarly complex structural 
relations, thereby treating change as a first-class citizen; 

• provide automated alerting of criteria that cease to be satisfied; 

• allow flexible adaptation to domains, e.g. ATM; 

• enable the flexible, scenario-specific definition of the aforementioned complex 
criteria;  

• enable the engineer to define automated reactions to change events where 
applicable; 

• enable the reactions for automatic reconfiguration of the design model; 
automatic application of security-related design decisions; and automatic 
reusing of design artifacts (e.g. argumentations), to be filled later by the 
engineers, that are required for a system evolution to be admissible from a 
security viewpoint. 

4.2 Application of evolution rules in SeCMER 
There are two processes where Evolution Rules play a role. The reason for the 
existence of Evolution Rules is to exert their influence during the “Requirements 
Evolution” process in the maintenance phase, and there is also a separate process for 
defining evolution rules.  

The requirements model and other related models (altogether Integrated Model) may 
experience an evolution that moves them out of a consistent, secure state. Automatic 
detection of the undesired nature of change and the potentially automated reaction is 
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the prime benefit of using evolution rules. This change detection mechanism applies 
regardless whether the change is merely a simulation of an anticipated future change, 
or actually initiated by a stakeholder request, or applied as a reaction to a previous 
change, or caused by external circumstances and merely observed. 

Defining evolution rules is driven by the anticipation of such changes. The most 
important step is formalizing the conditions and events under which a reaction is 
necessary, using the provided language for Evolution Rules. The formal definition 
enables the automatic mechanism to detect these changes. In case solution templates 
can be readily identified in advance, these can also be attached to Evolution Rules as 
reactions. Some evolution rules will be indentified at the start of the project lifecycle, 
adapted to the domain and modeling style; others will be established later on the go. 
The latter case is embedded in or triggered by security engineering processes. We 
believe argumentation is the most likely subprocess where new evolution rules will be 
introduced, to reduce future human effort. 

A typical example of the proposed workflow would happen the following way. We 
investigate the possibility of a future external change by simulating it in the model. The 
change directly results in a model state that is inconsistent with security constraints, as 
determined by the argumentation process (possibly communicating with risk analysis 
and architectural modeling processes). The output of the process will be a solution to 
this specific kind of change, and optionally pre-emptive modifications to brace the 
system for the effects of the anticipated change. Additionally, it is determined that the 
decision can be generalized to a range of similar potential changes that are structurally 
similar and cause similar security concerns. After carefully analyzing all conditions, this 
class of changes are formally captured by an Evolution Rule. If the resolution in these 
cases cannot be automated, then the only reaction rule will trigger is to alert the 
engineers and prompt them to perform analysis; otherwise solution templates can also 
be created for the rule. Finally, the new Evolution Rule is deployed, and from that point 
onwards, it will contribute to monitoring and reacting to changes, be they experiments, 
changes in external factors, stakeholder requests or themselves reactions to preceding  
changes. 

4.3 Underlying model transformation technology 
The language and efficient implementation of evolution rules relies on technology 
pioneered for automated model transformations. As revealed in many surveys and 
papers during the recent years [7, 8, 12], model transformation (MT) languages and 
tools play an important role in modern model-driven system engineering in order to 
query, derive and manipulate large, industrial models. 

As a typical example, tool integration requires that a complex relationship be 
established and maintained between models conforming to different domains and 
tools. In the context of SecureChange, synchronization involving requirement and 
design models would pose a transformation problem.  

Model synchronization tasks can be formulated as the obligation to keep a model of a 
source language and a model of a target language consistently synchronized while the 
underlying source model (and sometimes the target also) is evolving. Model 
synchronization is frequently captured by transformation rules [3]. When the 
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transformation is executed, traceability links are also generated to establish logical 
correspondence between source and target models.  

Traditionally, model transformation tools support the batch execution of transformation 
rules, which means that input is always processed “as a whole”, and output is always 
regenerated completely. However, in case of large, complex, and continuously evolving 
models, batch transformations may not be feasible. To address the issue of model 
evolution, incremental model transformations (i) update existing target models based 
on changes in the source models [23], and (ii) minimize the parts of the source model 
that need to be reexamined by a transformation when the source model is changed [5]. 
In the terminology of [8], these aspects are called target and source incrementality, 
respectively.  

Since rules are defined in terms of patterns and actions, pattern matching plays a key 
role in the execution of model transformations. The goal of pattern matching is to find 
the occurrences of a pattern, which imposes structural as well as type constraints on 
model elements. Source incrementality can be achieved by employing incremental 
pattern matching techniques; for example, the RETE [10] incremental algorithm was 
used in [5].  

The central idea of incremental pattern matching is that occurrences of a pattern are 
readily available at any time, and they are incrementally updated whenever changes 
are made. As pattern occurrences are stored, they can be retrieved in constant time – 
excluding the linear cost induced by the size of the result set itself –, making pattern 
matching a very efficient process. Benchmarks [4] and practice have shown that 
incremental pattern matching can improve performance or scalability by up to several 
orders of magnitude in certain scenarios. 

Based on source incrementality, it is also possible to detect the appearance and 
disappearance of pattern matches efficiently. Ráth et al [23] introduced a live 
transformation approach where a model change is captured by a change in the match 
set of a graph pattern, and transformation rules are triggered by such events.  

4.4 Conceptual model for evolution rules 
Evolution rules control how one model, or an interconnected set of models, follow the 
evolution of a source model in order to maintain security and other objectives (Figure 
21) Evolution rules are defined in conformance with the Event – Condition – Action 
semantics [2] to specify the desired reaction to changes performed on the model.  

Basically, an Event captures an elementary transition of the system to a different (not 
necessarily internally consistent) state, identifying the change that happened between 
the two states. An Action is a list of operations that constitute the reaction to that event. 
The strength of the formalism is that the reaction can depend on the context where the 
event happened, as defined by the Condition part. Event and Condition both serve as a 
way of monitoring the evolution of a system. The key difference is that Event captures 
a dynamic change in the system, while Condition identifies the static context where this 
change happened. 

The Event part of the evolution rule is matched against every change executed on the 
model. The Condition may restrict the cases where the rule is applicable, and may 
select multiple ways to apply it. The Action part manipulates the model by issuing 
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change commands itself; these changes will eventually be processed like any other 
change operation, and reacted upon by evolution rules. 

  
Figure 21 Conceptual model for evolution rules 

Various kinds of change commands can be issued. The most basic change kinds are 
the creation of entities and relationships of a specific type, deleting them and modifying 
their values. This list of change kinds is extensible to incorporate a more refined notion 
of changes, or domain specific change macros.  

An actual change command has a change kind and refers to actual entities or 
relationships as affected elements. The definition of an evolution rule, however, refers 
to rule variables as affected elements instead. The Event part match changes against 
one or more change queries. Each of them captures the change in terms of the 
appearance or disappearance of element configurations (patterns). An attribute 
contains the sign of the change query. The appearing/disappearing element 
configuration of the change query is described by a set of predicates formed on rule 
variables. The Condition part describes the context of the event, likewise with 
predicates on variables. Some of these variables are typically used by the change 
queries as well. The two most common predicate types are entity predicates 
(constraining a variable to a given entity type) and relation predicates (constraining a 
variable to a given relation type, connecting a source variable and a target variable). 
The Action part contains a sequence of reaction templates that are parameterized by 
rule variables appearing in the Event, Condition or even preceding reaction templates, 
and can be instantiated into applicable commands by substituting the parameter 
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variables. The most important type of reaction template is the change template that can 
be instantiated into a change command of a certain change kind. The evolution rule 
contains all variables mentioned by the Event or the Condition, a subset of which is 
accessed by the Action. 

Change queries are intended to match actual change events that cause the 
appearance or disappearance of the appropriate patterns, and substitute the variables 
to the affected elements. After that, the Condition is evaluated to decide whether the 
rule can be applied for this particular change, and to substitute remaining free 
variables. The Action is applied for each possible substitution; this means instantiating 
all reaction templates with the substituted values of variables. In case of change 
templates, the resulting change commands can be submitted for execution and 
evolution rule application. 

4.5 Mathematical foundations 
The notion of Evolution Rules has precise mathematical underpinning based on the 
theory of graph transformation. For purposes of formalization, we represent the 
requirement model and other associated models such as design as (attributed) graphs. 
Whether and when a rule is applicable is determined by the formalism of graph 
patterns in case of static models; or the more advanced graph change patterns in case 
changes are taken into consideration. The formal foundations presented here are a 
simplified version of the definitions in [6]. 

4.5.1 Graph Patterns 

Our Evolution Rule formalization relies on the concepts of graph model, graph pattern, 
pattern matching and NAC (negative application condition), widely known in the field of 
graph transformation. 
Definition 1 (Graph Model) A graph model over a type system Type is a structure 

G=〈Ent,Rel,src,trg,typ〉 where Ent is a set of entities (graph nodes), Rel is a set of 

relations (graph edges); src,trg:Rel→Ent map the relations to their source and 

target entities, respectively; and the typing of elements is typ:GE→Type where GE 

is an abbreviation for the set of graph elements Ent∪Rel. 

Our graph model assumes that each entity and relation takes its type from a type 
system which is simplified here to a set of predefined types. Note that we make no 
assumptions on the actual types here, so that model elements from other modeling 
domains can be represented in connection with requirements. The notion of type 
compatibility is beyond the scope of this simplified formalization. Various other model 
features such as containment or attributes are also omitted here for brevity.  

Definition 2 (Graph Pattern) A graph pattern P=〈V,C〉 over a type system Type 

contains a set V of pattern variables, and a set of graph constraints C=Cent∪Crel 

attached to them. Entity constraints Cent⊆V×Type state that a variable is a node of a 

certain type. Relation constraints Crel⊆V×Vrel×V×Type state that a variable is an 

edge of a certain type, connecting two given variables representing the source and 
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the target of the edge. To identify the variables and constraints of a specic pattern 

P, we use V(P) and C(P), respectively. 

The pattern language also permits additional constraints such as containment, equality 
and inequality, attribute constraints, or pattern composition, which are not detailed 
here. 

Definition 3 (Graph Pattern Match) A substitution s:P→G of a graph pattern 

P=〈V,C〉 in a graph model G=〈Ent,Rel,src,trg,typ〉 over a type system Type is a set of 

variable assignments asgn∈V×GE, one for each variable v∈V. Let s(v)∈ME denote 

the model element assigned by s to the variable v∈V.  

A substitution satisfies an entity constraint c=〈v,t〉∈Cent iff typ(s(v)) is compatible 

with t. A substitution satisfies a relation constraint c=〈v,a,b,t〉∈Crel iff src(s(v))=s(a) 

and trg(s(v))=s(b) and typ(s(v)) is compatible with t.  

A match m:P→G is a substitution that satisfies all constraints c∈C of P, which will 

be denoted by G,m⊨P. 5 

A negative application condition (NAC, indicated by the neg keyword) prescribes 
contextual conditions that, if satisfiable, invalidate a match of the pattern. 

Definition 4 (Graph Pattern with Negative Application Condition) A pattern 

with NAC is PN =〈P,N*〉 where P=〈V,C〉 is a (positive) graph pattern, and N* is a set 

of negative application conditions Ni=〈Vi,Ci〉, each being a well-formed graph 

pattern, such that P⊆Ni meaning that V⊆Vi and C⊆Ci. 

Commonly, only the subpattern SNi=Ni\P is explicitly indicated and depicted in figures 
and code extracts, which is defined as SNi=〈SVi;SCi〉, where SCi=Ci\C and SVi⊆Vi is 
the set of variables involved in SCi.  

Definition 5 (Match of Graph Pattern with NAC) A match m:PN→G of PN=〈P,N*〉 

in graph model G is a match of the positive pattern G,m⊨P, where there is no 

Ni∈N* and match mi:Ni→G such that m⊆mi (meaning that mi(v)=m(v) for all v 

variables of P). 

Some graph pattern languages, including the one that will serve as the basis of 
Evolution Rules, even permit NACs to have NACs of their own. If there is no limit on 
the number of negations that can be nested within each other, graph patterns (without 
attribute constraints) become expressively equivalent to first order formulae over the 
predicates describing the graph model [9]. 

                                                        
5 Remark: from now on, we assume that a single type system Type is given, and will not include it in 

each further definition. 
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4.5.2 Graph Change Patterns 

We define the advanced formalism of Graph Change Patterns (not to be confused with 
the change pattern concept of WP2) to capture how a graph model changes in an 
evolution. In addition to conventional graph patterns matched against the current 
snapshot, a change pattern should also contain constructs for expressing the 
difference between two graphs, in the form of change queries. An appearance query 
indicates a graph pattern with a new match in the post-state, while the disappearance 
query indicates that a match of a given graph pattern is invalidated by the change.  

When matching change patterns, the key idea is to simultaneously match them against 
a pair of graph models, called the pre-state (before state) and the post-state (after 
state). Appearance queries are graph patterns whose matches have appeared in the 
post-state, but were not present in the pre-state; and disappearance queries are 
patterns whose match has disappeared. 

In some scenarios, the appropriate reaction to a change does not only depend on the 
after state, but also on the net change (or equivalently, the before state). The true 
strength of Graph Change Patterns is the ability to distinguish cases where the current 
(after) state is the same, but it was reached through different cases, from different 
before states. As the pattern variables are mapped to the locality of the change, a 
match of the Graph Change Pattern also pinpoints where the reaction should be 
applied. 

The intention behind our formalism is that a change pattern should match regardless of 
the order of elementary model manipulations that ultimately satisfied the appearance / 
disappearance / update queries, it is therefore irrelevant what the last operation was 
that e.g. completed the pattern of the appearance query. As a result, a single change 
pattern compactly captures a large set of different change sequences. 

Definition 8 (Graph Change Pattern) Graph Change Patterns (GCP) can be 

defined as a tuple GCP=〈PN,P+*,P-*〉, where 

• PN=〈P,N*〉 is the main graph pattern with the positive pattern P and 

negative application conditions N*. 

• P+* is a set of graph patterns {Pi = 〈Vi,Ci〉} called appearance queries. , Each 

appearance query Pi=〈Vi,Ci〉 represents that a certain graph pattern appears 

due to the change. Pi is allowed to share variables with P. 

• P-* is a set of graph patterns {Pj = 〈Vj,Cj〉} called disappearance queries. , 

Each disappearance query Pj=〈Vj,Cj〉 represents that a certain graph pattern 

disappears due to the change. Pj is allowed to share variables with P. 

• Appearance and disappearance queries altogether are called change 

queries. 

• The set of common variables of a change query and the main pattern is 

called its interface. , and the set of common variables is their interface. 

Ii=Vi∩V(P) and Ij=Vj∩V(P). 
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• The pre-state pattern Ppre(CP) = (∪Pj∈P-*Pj)∪P  summarizes disappearance 

queries and the main positive pattern, i.e. all patterns representing 

existence in the pre-state.. 

• The post-state pattern Ppost(CP) = (∪Pi∈P+*Pi)∪P  summarizes appearance 

queries and the main positive pattern, i.e. all patterns representing 

existence in the post-state.. 

GCPs are matched against a pair of graphs Gpre and Gpost, such that Gpost is derived 
from Gpre by model manipulation. Thus the sets of model entities (Entpre and Entpost) and 
relations (Relpre and Relpost) may intersect on elements that were preserved by the step 
from Gpre to Gpost.. 

Definition 9 (Match of Graph Change Pattern) A match of the Graph Change 

Pattern GCP=〈PN,P+*,P-*〉 in 〈Gpre;Gpost〉 is the mapping m=〈mP,m+*,m-*〉: 

GCP→〈Gpre;Gpost〉, where  

• mP: PN→ Gpost is a match of PN, in the post-state Gpost.  

• For each Pi in P+* the set m+* contains a mapping mi:Pi→Gpost such that 

o mi is a match of graph pattern Pi in graph Gpost, 

o mi(v) = mP(v) for interface variables v ∈ Ii, i.e. mi interfaces with the 

match of the main pattern, and 

o the same mi is not a match of graph pattern Pi in the pre-state Gpre. 

• For each Pj in P+* the set m+* contains a mapping mj:Pj→Gpre such that 

o mj is a match of graph pattern Pj in graph Gpre, 

o mj(v) = mP(v) for interface variables v ∈ Ij, i.e. mj interfaces with the 

match of the main pattern, and 

o the same mj is not a match of graph pattern Pj in the post-state Gpost. 

 

Note that this definition is deliberately asymmetric for Gpre and Gpost, as the main 
pattern PN is interpreted on Gpost only.  

4.5.3 On computational complexity 

Graph pattern matching can be a computationally intensive process. As it contains the 
well-known problem of Subgraph Isomorphism, it is NP-hard. However, in most cases 
the pattern will be of bounded (even small) size, while the model itself may grow big. It 
is easy to see that with this assumption, the worst-case time complexity is the size of 
the model to the power of the size of the pattern, therefore polynomial. 
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Still, this step may take long. The whole point of incremental pattern matching (see 
Section 4.2) is to avoid the time-consuming full re-computation of the match set after 
each small modification. Assessing the execution time and space requirements of 
incremental pattern matcher algorithms is a challenging task, having to take into 
account pattern structure, graph model structure, match set sizes of patterns and sub-
patterns, the extent and consequences of change, etc. Some cost models of RETE, the 
data structure used in the implementation, are available at [25] and [1]. 

Having incremental pattern matching available, computing the change sets after an 
evolution from Gpre to Gpost, i.e. the set of new pattern matches and the set of 
invalidated pattern matches, is a trivial task. GCPs can be thought of as a construct 
very similar to graph patterns on the union of the post-state (main graph pattern) and 
the change sets (change queries). Therefore evaluating GCPs has similar complexity 
characteristics as plain graph patterns. 

4.5.4 Rule Formalism 

Harnessing the strength of GCPs, a powerful rule-based automation formalism can be 
defined. Without going into details of how the reactions themselves are defined, such a 
rule can be characterised by a guard that is a GCP; after a change to the model, the 
actions associated with the rule are executed for each match of the guard. In 
publications by the authors in the field of model transformation (e.g. [6]), such a rule 
was referred to as Change-driven Rule (CDR).  
Relying on technologies developed for model transformation purposes (incremental 
pattern matching), GCP can be detected efficiently. Consequently, a rule-based system 
specified by CDRs can be executed in an efficient way.  

In the context of Security Engineering, the Evolution Rules envisioned in Section 7.1 
can be immediately formalized as CDRs, lending both efficiency and expressivity to the 
approach. The Condition part of the Evolution Rule expresses constraints on the 
current (after) state, therefore it is formalized the PN part of the CDR. The appearance 
and disappearance Events are formalized as change queries in P+* and P-*, 
respectively. Finally, the Action is associated with the CDR (which was not formally 
defined in Section 7.4.2) 

4.6 Examples of evolution rules 
We now demonstrate the power of the language by showing how a certain issue that 
arises in evolving requirements models can be addressed by evolution rules. 

In an evolving requirements model, new actors may be introduced, delegation and trust 
relationships may be changed, all raising security concerns. When an actor is taking 
over the responsibility (delegation) of a security goal previously achieved by a different 
actor, a problematic situation may arise if other actors do not have trust in the new 
setup. The same hold for delegating other entities (e.g. assets) instead of goals. 
Basically, intervention is required in situations when an actor delegates some 
responsibility (e.g. a security goal) to another actor, but does not trust the other one 
with the same object.  
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The appropriate reaction can range from logging the event, raising a warning or 
initiating an argumentation that will be finished by security engineers, to automatic 
intervention like creating the missing trust relationship, depending on policy. The 
reaction might depend on how such an undesired state of the model was produced.  

To illustrate the capabilities of the evolution rule formalism, we first design a graph 
pattern to express the undesired configuration, and then we draft three alternative 
solutions with evolution rules to intervene in these situations.  

4.6.1 Graph pattern for expressing the problem 

Figure 22 visually depicts the graph pattern (with a negative condition) that 
characterizes this undesired configuration of elements.  

In a match of the pattern, the (positive) pattern variables Act1, Act2, Obj, Del will be 
mapped to entities in the model. Act1 will be substituted for an entity of type Actor that 
delegates the responsibility of an entity Obj to the actor Act2 using the delegation 
relationship Del; where at the same time, there is no trust relationship Tru such that 
Act1 trusts Act2 over Obj.  

 
Figure 22 The undesired pattern: untrusted delegati on 

4.6.2 Solution 1: one rule per elementary change 

The first solution would be to create several evolution rules, one for each possible 
elementary change that can complete the pattern and make an intervention necessary. 
In this case, two kinds of elementary changes can trigger the rule: the detection of a 
newly added “delegation” relationship between two actors (and the dependum), or the 
deletion of an actor-actor trust (over a dependum).  

Both changes can be captured by the Event part of a separate evolution rule 
(appearance event in the former case, disappearance in the latter). The condition part 
is required to determine whether the change actually completes the pattern: when a 
delegation appears, the non-existence of a trust with the same dependum will have to 
be checked; when a trust disappears, the existence of the delegation with the same 
dependum will have to be checked. The Action creates an argument prototype (i.e. a 
placeholder), connected to the violated security goal, to discuss the problem. 
Engineers will have to manually finish the argument with domain-specific knowledge, or 
fix the problem. Additionally, the Action contains a simple logging statement; observe 
how the two different cases can be handled differently. The following pseudo code 
listing describes these two evolution rules; syntax is not final. 
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evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation1 { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 eventeventeventevent    ==== appearappearappearappear { 

  entityentityentityentity Actor(Act1); 

  relationrelationrelationrelation Actor.delegates(Act1-Del�Act2); 

  entityentityentityentity Actor(Act2); 

        Actor.delegates.dependum(Del—DD->Obj); 

  entityentityentityentity Object(Obj); 

 } 

 conditionconditionconditioncondition { 

  nononono    (Tru, TD)    such that {such that {such that {such that {    

            relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2); 

   relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);  

  } 

 } 

 actionactionactionaction { 

  loglogloglog “Delegation created without supporting trust: $Act1-$Obj-$Act2”; 

        create ecreate ecreate ecreate entityntityntityntity Argument(Arg); 

  create rcreate rcreate rcreate relationelationelationelation Argument.supports(Arg—AP->Obj); 

 } 

} 

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation2 { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 eventeventeventevent    ==== disappeardisappeardisappeardisappear { 

  entityentityentityentity Actor(Act1); 

  relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2); 

  entityentityentityentity Actor(Act2); 

        relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj); 

  entityentityentityentity Object(Obj); 

 } 

 conditionconditionconditioncondition {        

     relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);  

  relationrelationrelationrelation Actor.delegates.dependum(Del—DD->Obj); 

 } 

 actionactionactionaction { 

  loglogloglog “Removal of trust threatens delegation: $Act1-$Obj-$Act2”; 

        create ecreate ecreate ecreate entityntityntityntity Argument(Arg); 

  create rcreate rcreate rcreate relationelationelationelation Argument.supports(Arg—AP->Obj); 

 } 

} 
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4.6.3 Solution 2: single coarse-grained rule 

The change query formalism introduced in this chapter allows the detection of changes 
that are defined by multiple predicates. This results in the capability of change queries 
to observe the appearance (or disappearance) of a complex pattern, regardless what 
the last elementary change was that completed the pattern. 

In this case, the entire undesirable pattern can be captured in an appearance event of 
a single evolution rule; whenever the undesired pattern appears, the evolution rule will 
fire, independently of the order of operations that eventually resulted in the appearance 
of the pattern. This enables us to formulate the solution much more concisely; in this 
simple example, even the Condition part could be discarded. 
evolution evolution evolution evolution rulerulerulerule UntrustedDelegation { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 eventeventeventevent    ==== appearappearappearappear { 

  entityentityentityentity Actor(Act1); 

  relationrelationrelationrelation Actor.delegates(Act1-Del�Act2); 

  entityentityentityentity Actor(Act2); 

        Actor.delegates.dependum(Del—DD->Obj); 

  entityentityentityentity Object(Obj); 

  nononono    (Tru, TD)    such that {such that {such that {such that {    

            relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2); 

   relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);  

  } 

 }  

 conditionconditionconditioncondition {} 

 actionactionactionaction { 

  loglogloglog “Untrusted delegation: $Act1-$Obj-$Act2”; 

        create ecreate ecreate ecreate entityntityntityntity Argument(Arg); 

  create rcreate rcreate rcreate relationelationelationelation Argument.supports(Arg—AP->Obj); 

 } 

}  

This kind of concise solution is much quicker to develop and understand. Development 
also becomes less error-prone, as the rule designer does not have to manually take 
care of all possible elementary changes that can result in the appearance of the 
complex pattern; the previous solution would have been insufficient if the rule 
UntrustedDelegation2 had been accidentally omitted. The disadvantage is that the 
same Action part is executed regardless of the last elementary change that triggered 
the rule; if some cases do require special action, than more evolution rules should be 
used with an event granularity that is just enough to distinguish the relevant cases. 

4.6.4 Solution 3: automatic problem correction  

Apart from logging the detection of the pattern and reusing an argumentation, evolution 
rules can also correct problems present in the model. The difficulty of this approach is 
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that often there is more than one way to remedy an issue, and the decision is hard to 
automate. For instance, the problem in this example can be solved by adding a missing 
trust relationship; or by removing the delegation (and probably implementing something 
else in its place). Both are valid ways to handle the issue, but engineers should select 
manually which one should be applied in each concrete case. To achieve this, we 
introduce two alternate evolution rules that implement these two reactions. Together 
with the rule UntrustedDelegation of Solution 2 introduced in Section 4.6.3, they 
provide three options that can be automatically offered to the engineers to choose 
from.  

Note that the three rules can reuse each other’s Event parts for more concise 
specification. Once again, the syntax is not final. 
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_AddTrust { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj); 

 event =event =event =event = UntrustedDelegation.event 

 conditionconditionconditioncondition {} 

 actionactionactionaction { 

  loglogloglog “Resolving untrusted delegation ($Act1-$Obj-$Act2) by adding 
missing trust link”; 

  create relationcreate relationcreate relationcreate relation Actor.trusts(Act1—Tru->Act2); 

        create relationcreate relationcreate relationcreate relation Actor.trusts.dependum(Tru—TD->Obj); 

 } 

} 

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_RemoveDelegation { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj); 

 event =event =event =event = UntrustedDelegation.event 

 conditionconditionconditioncondition {} 

 actionactionactionaction { 

  loglogloglog “Removing untrusted delegation: ($Act1-$Obj-$Act2)”; 

  delete relationdelete relationdelete relationdelete relation DD; 

  delete relationdelete relationdelete relationdelete relation Del; 

 } 

} 

Where applicable, evolution rules can directly manipulate the model to automate the 
solution of common problems. Some of the change patterns introduced in D2.1 can be 
considered as possible candidates for being automated with evolution rules.  

4.6.5 Discussion  

None of the above rules deal with the disappearance of the undesired pattern. 
Depending on policy, additional rules may have to be defined to react to security 
problems being solved, as the actions of the other evolution rule (e.g. placing a 
warning marker or creating an argumentation placeholder) may have to be undone or 
compensated.  
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The example presented in this section shows how the goals in Section 7.1 can be 
satisfied using the proposed formalism for evolution rules: 

• the untrusted delegation was captured as a complex structural property 

• a change event detecting the change of this complex property was defined 

• the formalism is general enough to be refinable for domains or scenarios 

• the rules can take appropriate domain-specific actions 

• these reactions include user interaction (logging in this example) and the 
modification of a model (creating the argument placeholder, creating, removing 
the delegation)  
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5 Application of the Methodology 

This section illustrates the different steps of the SecMER methodology based on the 
process level change and the information protection property of the ATM case study. 
The Process Level Change is about the introduction of the Arrival Manager (AMAN), 
which is an aircraft arrival sequencing tool helping to manage and better organize the 
air traffic flow in the approach phase. The introduction of the AMAN requires new 
operational procedures and functions (as described in Deliverable D1.1) that are 
supported by a new information management system for the whole ATM, an IP based 
data transport network called System Wide Information Management (SWIM) that will 
replace the current point to point communication systems with a ground/ground data 
sharing network which connects all the principal actors involved in the Airports 
Management and the Area Control Centers. The introduction of the AMAN and the 
SWIM requires suitable security properties to be satisfied which prevent from 
corruption, accidental or intentional loss of data and guarantee the integrity and 
confidentiality of the aircraft sensible data against malicious attacks or intrusions.We 
will focus on information access and information protection properties on the 
requirements level. In particular, we will show how to achieve information access by 
enforcing access control policies on Flight Data Domain (FDD) transmission and how 
to ensure confidentiality of FDD data by using encryption.   

5.1 Requirement Elicitation 
The first step of our methodology consists of modeling the ATM system before the 
introduction of the AMAN and the SWIM using the SecMER conceptual model.  The 
resulting requirement model is illustrated in Figure 23. 

The main actors are the Sector Team at the destination airport composed by the 
Planning and the Tactical Controller, the CWP, and the dedicated communication lines 
(telephone, radio communications).  The flight arrival management operations are 
performed by the Sector Team (Tactical and Planning Controllers) that has to compute 
the arrival sequence for the flights and give clearances for landing to the pilots flying in 
their sector on the basis of the information displayed by the CWP such air traffic, radar 
data, monitor displaying inbound/outbound traffic planned for the sector, telephone 
switchboards, airlines and airport operators preferences or priorities about arrival 
runways. Communications between different ATM actors take place over dedicated 
and secure radio communications lines. The CWP and the Communication Lines want 
the flight information to be protected by unauthorized access. 
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Figure 23 The “before” requirements model 
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5.2 Requirement Evolution 

 

 

 

Figure 24 The “after” requirements model 
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The introduction of AMAN and SWIM triggers a change request that requires the 
requirement engineer to update the requirement model. The resulting model is 
illustrated in Figure 24 where the new actors and goals are outlined in red. We have 
three new actors the Sequence Manager, the AMAN and the SWIM. The Sequence 
Manager is a new type of ATCO who will monitor and modify the sequences generated 
by the AMAN and will provide information and updates to the Sector Team. The AMAN 
main goal is to provide the arrival sequence by interacting with the FDP to get aircraft 
positions that are necessary to compute the arrival sequence. The communication 
between the different ATM actors is based on the SWIM, an IP based data transport 
network which replaces the current point-to-point connections systems. The SWIM 
actor has replaced the communication lines actor and it wants the security goal of 
protecting the data flight information from unauthorized access (Figure 24). 

5.3 Argumentation for security properties 
The argumentation analysis for security goals usually consists of three types of steps. 
Claims are to establish the satisfaction of the security goals using the facts and domain 
knowledge rules available in an elicited requirements model. On the other hand, while 
the requirements model evolves along with change in the world, additional facts and 
domain knowledge rules may refute the argument for the satisfaction claims. Such 
rebuttals must be handled properly, by revisiting the facts and domain knowledge rules 
in the model, or by finding additional facts and domain knowledge rules for their 
mitigations. These three steps can be applied to any state of the requirements model, 
and they can interleave with the application of evolution rules in the iterative SeCMER 
process.  

Rebuttals . During the argumentation analysis, the “before” scenario was observed 
insecure by the rebuttal that the changes introduced into the system could deny the 
security goal. The newly acquired domain knowledge “A man-in-the-middle attack 
happened to the communication lines could distort the data flight information”, which 
violates the security goal of the SWIM actor: “the data flight information are protected 
from unauthorized access”. This rebuttal is confirmed by the argumentation analysis, 
which can be generalized into the following pattern “delegates information to an actor 
through a shared communication process” and “the communication process may be 
shared with actors not trusted”.  

Mitigations . The next step during the argumentation analysis is to find mitigations to 
the rebuttal. One type of mitigation is to reassess the risks associated with the facts 
and domain knowledge raised by the rebuttals and reject a change when the risk is 
low. However, this is not the case in the example. The risk of exposing the data link to 
malicious attackers is high if no mechanisms are introduced to protect the secure 
transmission of data flight information. Therefore, the change to the communication line 
is proposed “to encrypt the data in transmission by the sender and decrypt it by the 
receiver end”. The domain knowledge that “it is difficult for untrusted eavesdropper to 
decrypt the data flight information” assures that the new system with the encryption is 
secure. The generalization of the mitigation step can be stated as follows: “if the before 
situation a delegates relation is untrusted and the communication is not encrypted, a 
change is needed to introduce encryption as the solution”.  
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Alternatives . In fact, the argumentation process can continue, with the rebuttals on the 
previous mitigation suggests that the data encryption with poor strength key is still easy 
to be decrypted by attackers armed with password dictionaries. As a mitigation step to 
this, the maintained could introduce the change the “untrusted delegates relationship” 
into “trusted delegates relationships”, and introduce an additional requirement on “the 
delegatee actor shall be trusted” by using a key to access the lock in the control room. 
A generalization of this mitigation is to add “obligatory actions” to the trusted delegatee 
actors and to avoid using the communication links through untrusted channels. 

Automation . Security goals often push the system boundary to enclose emergent 
facts and domain knowledge, some argumentation analysis has to be carried out 
interactively. On the other hand, conceptual model for argumentation makes it easier to 
turn the three types of modelled arguments into predicate logic formula that are 
checked using off-the-shelf reasoning tools [14].  

In the next subsection, we introduce several evolution rules that formally combine the 
events, conditions of the rebuttals and the actions of the mitigations. 

5.4 Deriving and using Evolution Rules 
In an evolving requirements model, new actors may be introduced, delegation and trust 
relationships may be changed, all raising security concerns. The ATM evolution case 
study is an example of this phenomenon: the new SWIM actor is introduced, taking 
over the responsibility of secure communication, but other actors such as CWP not 
necessarily trust it. This is exactly the problem that the step described in Section 4.6 
addresses; in the following, we will demonstrate how such evolution rules can be 
derived and applied in the concrete ATM example. 

In the previous subsections, we have explained how an informal argument is 
constructed, rebutted and mitigated on the elicited requirements models. In case the 
argumentation turns out to be (partially) mechanic, we can enumerate Event-Condition-
Action evolution rules where events and conditions are obtained from the rebuttals, and 
the actions obtained from the mitigations. 

To come up with the events and conditions, we first represent a part of the complete 
requirements model as a graph pattern. For example, when an actor delegates some 
responsibility (e.g. the security goal of the CWP actor to protect the data 
communication line from man-in-the-middle attack) to another actor (e.g., SWIM), but 
does not trust the latter with the same object (e.g., the data communication link). The 
graph pattern that characterizes the undesired configuration of elements was 
previously shown in Figure 22. In context of the ATM example, Act1 can be the Actor 
CWP, which delegates (through a delegation relation captured in variable Del) the Goal 
Receive (matching the variable Obj) to Actor SWIM (which will be Act2); this variable 
substitution is a match of the pattern as there is no trust relationship Tru between these 
two actors over this goal in the model.  

After assembling the graph pattern, the event and condition specifications will have to 
be derived from it. We can create several evolution rules, one for each possible 
elementary change that can complete the pattern and make an intervention necessary. 
This will produce an outcome similar to Solution 1 presented in Section 4.6.2. 
Alternatively, simpler and more concise rules can be used, similar to Solution 2 from 
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Section 4.6.3, if the mitigation only depends on the after state, and not on the nature of 
the change itself.  

Regardless of the chosen approach, the action part can alert the argumentation 
engineers, or perform automated intervention by directly manipulating the model if the 
mitigation is close to deterministic. See Solution 3 from 4.6.4 as an example. Some of 
the change patterns introduced in D2.1 can be considered as possible candidates for 
being automated with evolution rules.  

The given solutions can be demonstrated by applying them on the example models 
that represent the before/after situations in the ATM domain.  Observing the After 
situation more closely, one can notice that contrary to the old communication system, 
the new SWIM system is not yet trusted by actors such as CWP and FDP. This may be 
a security issue, as the goals Send and Receice are now delegated to SWIM, which 
obviously requires trust. Fortunately, the example evolution rules presented in Section 
7 can be used to automatically detect untrusted delegations. For example, if we use 
the general evolution rules introduced earlier, they will be triggered for multiple 
individual matches by this example evolution. The rule matches the rule variables to 
actual substitutions that experienced the Event and satisfy the Condition. In one 
concrete match, Obj will be mapped to the goal Send, and Act1 will be mapped to FDP; 
in a second case, Obj will be the goal Receive and Act1 will be CWP; Act2 will be 
mapped to SWIM in both cases. Engineers will be able to choose from three options for 
each individual match: to fill in the missing trust link (this is the likely solution in our 
case), to abolish the delegation, or to build an argumentation explaining why there is 
no real problem.  

5.5 Interaction of argumentation and evolution rule s 
As discussed before, there are several ways for the evolution rules and the 
argumentation process to interact. It is expected that the engineers responsible for the 
argumentation can define domain-specific evolution rules that automatically maintain 
some information related to the arguments in the model. In an ideal scenario, such 
automation could always identify which arguments should be manually revisited, and 
which are unaffected by a change in the requirements model. Of course in most cases, 
there is no need to revisit each argument; if the set of rules for flagging arguments is 
comprehensive, relying on this automated process can save manual effort.   

In this ATM example, an event that can trigger an automated response in relation to an 
argument can be the introduction of an attacker with an anti-goal against the “Prevent 
Unauthorized Access” goal of SWIM. In this case, the argument in support of the 
security goal should be flagged for manual re-evaluation. We show how argumentation 
experts using the evolution rule language of SeCMER can define such a rule: 
evolution ruleevolution ruleevolution ruleevolution rule AttackerInvalidates { 

 variablesvariablesvariablesvariables = (Atk, AG, SecG, Arg, W1, D1, S1); 

 eventeventeventevent    ==== appearappearappearappear { 

  entityentityentityentity Attacker(Atk); 

  relationrelationrelationrelation Actor.wants(Atk–W1�AG); 

  entityentityentityentity AntiGoal(AG); 

  relationrelationrelationrelation AntiGoal.denies(AG-D1�SecG); 
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        entityentityentityentity SecurityGoal(SecG); 

 }  

 conditionconditionconditioncondition { 

        entityentityentityentity Argument(Arg); 

  relationrelationrelationrelation Argument.supports(Arg-S1�SecG); 

        entityentityentityentity SecurityGoal(SecG); 

 } 

 actionactionactionaction { 

  // flag argument as potentially invalid, notify argumentation team 

 } 

} 

Here is one example of iterative development of the argument triggered by the 
evolution rule. Typically such development is in the form of a dialogue. The first round 
of an informal argument might be: 

Initial claim:   

• The ATM system remains secure after introducing AMAN (C1). 

Initial facts:   

• The AMAN system is controlled by a new trustable operator called Sequence 
Manager (F1).  

• Sequence Manager reports to Sector Team about sequences (F2). 

• AMAN interacts with the FDP, CNS, and Meteo services to collect the Airport 
Operators priorities, the Airlines priorities, the Meteo condition, and the aircraft 
position (F3). 

• The actors are interconnected by the SWIM (F4). 

Initial domain knowledge rule :  
• If the members of the Sector Team obtain important information about the 

aircraft, information related to the aircraft position, for instance, the information 
may become available to a potential attacker. (DK1) 

Initial Rebuttals:   
• The Sequence Manager can have malicious intent due to social and 

psychological reasons (R1 on F1).  
• Members of the Sector Team obtain critical information not related to their tasks 

(R2 on F4). 
• Attackers eavesdrop on the SWIM network. 

 
Second round, one checks the R1 as a claim. Here is the supporting evidence for R1:  

• Each Sequence Manager has been through clearance to minimize the risk of 
being malicious F3=R1.1). 

• Role-based access control policies for Sector Team will stop members of the 
team accessing critical information not relevant to their tasks (F4=R1.2). 

 
Such argumentation can go on until all the facts and domain knowledge rules are 
refined so that all rebuttals of the root claim are not satisfiable. In other words, a 
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satisfaction claim is justified as long as all the facts and domain knowledge are true 
(e.g., trust assumptions in arguing security goals) and all the rebuttals are false. A 
formal treatment of argumentation using non-monotonic proposition logic can be found 
in [14]. As one can see, the result of such argumentations would inevitably contribute 
to changes in the situations of security goals. 
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6 Integration with other approaches in 
SecureChange  

The SecureChange project is developing a methodology for engineering of secure, 
long-lived and evolvable systems. Methods and techniques that have been developed 
in individual work packages are various parts of the methodology. This section 
discusses how requirements methodology of WP3 integrates with process and 
architecture methodology of WP2, the design methodology of WP4, and risk 
assessment methodology of WP5. 

The integration is shown both at a conceptual level and at a process level. The 
conceptual level integration shows how concepts from the requirements methodology 
relate to those in other methodologies. At the process level the integration shows how 
the flow of the process across the boundary of work packages. We illustrate and 
exemplify the integrated the integration based on the Organizational Level Change 
Requirement in the ATM case study and the Specification Evolution Change 
Requirement of the POPS case study. 

6.1 Integration of Requirements Engineering with 
the Overall Process and Architecture 

In this section, we describe the integration of SeCMER with the Overall Process model, 
described in WP2, through the artefacts and process. The purpose of the Overall 
Process model is to describe the abstract development process that can be 
instantiated by various specific methodologies of the SecureChange project, including 
the requirements engineering methodology. The purpose of requirements engineering 
methodology is to describe and analyze the requirements for change, and specify the 
security properties that need to be implemented in order to effect the change. 
Therefore, the general relationship between the Overall Process model and the 
requirements engineering methodology is that of abstract and concrete. 

6.1.1 Artefact Integration 

The SecureChange report D.2.2 has presented the integrated meta model (Figure 
Figure 25) showing the artefacts of the SecureChange project and their 
interdependencies. The artefacts are: 

• Integrated Model  
Integrated Model is an aggregated class comprising all other security 
engineering artefacts. Instances of the class describe the system at all levels of 
abstraction at a certain point of time. In Integrated Model may be in realised 
state or planned state. 

• System Model  
The System Model comprises all information relevant in WP4 and WP6. In 
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particular the System Model both comprises the software architecture layer and 
the code layer including security related information (e.g. formal models of 
security protocols). 

• Risk Model  
The Risk Model comprises information related to WP5  

• Requirements Model  
The Requirements Model contains information related to this work package 

• Test Model  
The Test Model contains information related to WP7. 

• ChangeRequest  
The ChangeRequest class represents a complex change transaction of the 
system at any level of abstraction, e.g. triggered by modified risks, requirements 
or components in the System Model. Each change request is associated with a 
an Integrated Model (=Integrated Meta Model instance) describing the state of 
the system when initiating the change request (pre), and with arbitrary many 
Integrated Model instances describing possible states after the change request 
has been closed (post).   
If the change request is in state closed, exactly one associated Integrated Model 
instance has to be in state realised. The possible states of a change request are 
described in detail in D2.2. Links between a change request and its post 
Integrated Model may be attached with information how the post Model has 
been constructed based on the pre Model. Two categories are supported and 
explored within SecureChange: Change Patterns (WP2) and Change Rules 
(WP3). Various concepts associated with the notion of change are discussed in 
Section 7. 

 

 
Figure 25 Integrated Meta Model 
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The SeCMER conceptual model of the evolving requirements discussed in Section 2.1 
(reproduced in Figure 26) is a specialisation of the Requirement Model package of the 
the Integrated Meta Model of D2.2, shown in Figure 25.  

 
Figure 26 Security Requirements Conceptual Model (in  relation to Integrated Meta Model) 

In particular, the SeCMER conceptual model of security requirements defines a 
requirement model in terms of concepts described in Figure 26. A detailed discussion 
of those concepts is given in Section 2. 

The Integrated Meta Model shows that there are three links from the Requirements 
Model: to the Risk Model, System Model and the Test Model through the links 
MMSyRe, MMRiRe and MMReTe. Sections 6.2, 6.3 and 6.4 below concretize those 
links. 

6.1.2 Process Integration 

According to the Integrated SecureChange Process presented in D2.2., the evolution 
of the system is determined by a sequence of change requests (for simplicity 
overlapping change requests are not considered at the current stage). Each change 
request causes one or several change events. These change events are handled by 
the state machines of the model elements of the Integrated Model causing state 
transitions and further events. 
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Before discussing the state models, Figure 26 shows a sample change story. The 
events in this sequence diagram are determined by an initial triggering change event 
(change of the Risk Model) and subsequently by the state machines. 

The change story exemplifies a change in the Risk Model (according to a user´s 
change request) and subsequent actions, starting with a check of the risks, the 
propagation of changes to the Requirements Model, the System Model and the Test 
Model, a final check of the risks and propagation to the Requirements Model. 

As a general remark change events in the Integrated Process are differentiated in 
external change events (change) and internally propagated events (propagate), e.g. 
the external change of the Risk Model (change) and the propagation of this change to 
the Requirements Model (propagate). The handling of propagation should make use of 
the respective mapping model in order to determine the affected part of the target 
model of the change propagation. 

 

 
Figure 27 Sample Change Story 

The SeCMER methodology, recalled in Figure 28, is an instantiation of the messages 
4:propagate and 5:checkRequirements in the change story. 4:propagate is the trigger 
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for the SeCMER methodology, and the processes Requirements Elicitation, Argument 
Analysis and Requirement Evolution instantiate 5:checkRequirements. Results from 
SeCMER can be propagated back to the SystemModel (6:propagate) through the 
System Design artifact in SeCMER methodology. Similarly, the results from SeCMER 
can also be propagated to the TestModel (7:propagate), through the incremental 
security properties that need to be checked in SeCMER. When the requirements have 
been implemented in SystemModel, the system is in the secure state, and the 
SeCMER methodology is terminated.  

 
Figure 28 Overview of SeCMER methodology 
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Figure 29 State Diagram of Requirements Model 

In the report D2.2, state diagram of the Requirements Model has been defined 
(recalled in Figure 29). the various states of a requirements model are explained: 

• defined: This state reflects that a requirements model has either been newly 
created or that it is subject to a change which can either be external 
(changeRequirements) or internal (propagate). 

• waiting: This state reflects that the requirements analysis is currently on hold to 
wait for the results of the risk analysis. That way we ensure that each change to 
the requirements is always undergoing a risk analysis first. 

• checking requirements: This state reflects that if the risk analysis is concluded or 
changes are propagated internally to the requirements model the requirements 
model is checked and analyzed. The result of checkRequirements can either be a 
failure in which case the state is changed back to defined of if it is ok, the 
changes are further propagated to the system and test model. 

• pending requirements: The requirements model remains in this state until the 
implementation is concluded and the system model fires the trigger 
requirements implemented. 

• complete: This is the target state of the requirements model. It outlines that the 
requirements have been implemented.  

Again, the development process is in the checking requirements state when the 
SeCMER process is being executed, in the pending requirements state when the 
changes specified in the incremental security properties are being implemented, and in 
the complete state when the SeCMER methodology is exited. 

6.2 Integration of Requirements Engineering and 
Risk Assessment 

The SecureChange process aims at developing an overall approach to the engineering 
of secure, long-lived and evolvable systems. Methods and techniques for requirements 
engineering is one of the cornerstones from the overall approach. In the wider setting 
of security engineering of changing and evolving systems, the requirements 
engineering constitutes one part of the overall process. 

In this section, we describe the integration between the SeCMER methodology and risk 
assessment methodology proposed in WP5. The purpose of the risk assessment is to 
understand the potential security risks that may arise, possibly due to some 
requirement changes, and to identify treatments for unacceptable risks so as to ensure 
and maintain an acceptable level of security. The results of a risk assessment (i.e., 
new treatments) may yield new security requirements that should be included in the 
requirement model. Moreover, the requirements changes may involve new assets that 
should be taken into account their risk levels. Therefore, a well-defined process that 
integrates the two methodologies is required to fully and properly understand both the 
requirements and the risks. 
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Moreover, in the setting of changing and evolving systems, there is a need to 
understand not only how the changes may affect security requirements on the one 
hand and security risks on the other hand; we also need to understand how changes to 
requirements and risks affect each other, and how the propagation of changes from the 
one to the other should be dealt with in a systematic way. 

We address the problem both at a conceptual level and at a process level. At the 
conceptual level we present an integration of concepts and explain how requirement 
model artifacts should be mapped to risk model artifacts and vice versa. At the process 
level, we utilize the conceptual level integration and explain how the conceptual 
integration comes into play in the integration of the respective methodologies. 

We illustrate and exemplify the integrated process based on the Organizational Level 
Change Requirement in the ATM case study. Notice that the risk assessment 
examples are based on the CORAS instantiation of the method for risk assessment of 
changing systems as presented in the appendix of deliverable D5.3. 

6.2.1 Conceptual Integration 

As standalone methods, both requirements engineering and risk assessment may 
adopt techniques, artifacts and concepts from each other’s domain. Requirements 
analyses may, for example, take into account threats and vulnerabilities, and risk 
assessments may include requirements identification as a separate task. For the 
purpose of understanding and describing the potentials for integration of the separate 
methods, we assume a separation of concern. This means that all risk specific 
concepts belong to the risk domain, and all requirement specific concepts belong to the 
requirement domain. The separation of concern assumption ensures that we can 
identify exactly the actual interface between the domains. 

In the following we first separately present the core and basic concepts of requirements 
engineering and risk assessment. Thereafter we present the conceptual level 
integration.   

6.2.1.1 Requirement Concepts 

The UML class diagram of Figure 30 gives an overview of the basic concepts of 
requirements engineering and the relations between them. We refer to Section 2.1 for 
a detailed presentation of the conceptual model. In the following we give the definitions 
of the concepts. 

• Action:  An entity performed by an actor, which can generate events, and can 
have preconditions and post‐conditions 

• Actor:  An entity that can act and intend to want or desire 

• Asset:  an entity of value that can be owned and used 

• Goal:  A proposition an actor wants to make true 

• Proposition:  A statement that can be true or false 

• Resource:  an entity without intention or behavior 
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• Security goal:  A proposition that specifies how to prevent harm to an asset 
through the violation of confidentiality, integrity, and availability security 
properties 

• Situation:  partial state of the world described by a proposition 

 

 
Figure 30 Basic requirements concepts  

6.2.1.2 Risk Concepts 

The UML class diagram of Figure 31 gives an overview of the basic concepts of risk 
assessment and the relations between them. We refer to deliverable D5.3 for a more 
detailed presentation of the underlying concepts of risk assessment. In the following we 
give the definitions of the concepts. 

 
Figure 31 Basic risk concepts 
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• Asset:  Something to which a party assigns value and hence for which the party 
requires protection. 

• Consequence:  The impact of an unwanted incident on an asset in terms of 
harm or reduced asset value. 

• Likelihood:  The frequency or probability of something to occur. 

• Party:  Stakeholder; an organization, company, person, group or other body on 
whose behalf a risk analysis is conducted. 

• Risk:  The likelihood of an unwanted incident and its consequence for a specific 
asset. 

• Threat:  A potential cause of an unwanted incident. 

• Threat scenario:  A chain or series of events that is initiated by a threat and 
that may lead to an unwanted incident. 

• Treatment:  An appropriate measure to reduce risk level. 

• Unwanted incident:  An event that harms or reduces the value of an asset. 

• Vulnerability:  A weakness, flaw or deficiency that opens for, or may be 
exploited by, a threat to cause harm to or reduce the value of an asset. 

6.2.1.3 Integration 

In the conceptual integration we distinguish between what we refer to as shared 
elements on the one hand and mappable elements on the other hand. The shared 
elements are concepts that are common to requirements engineering and risk 
assessment, with the same semantics in both domains. The mappable elements are 
concepts from one domain that are not shared by the other, but are nevertheless 
related to the other domain and can be mapped to concepts of the other domain. 

The shared elements are at the core of the integration, and the fact that they are 
shared means that if a change occurs such that a shared element is affected in one 
domain, it will inevitably affect the same element in the other domain. Considering the 
conceptual framework of the two domains, we identify one shared element, namely the 
asset . In both domains, an asset is something of value for a stakeholder. A main 
objective of requirements engineering is to elicit requirements where they are assured 
to be achievable securely at runtime, while a main objective of risk assessment is to 
identify risks with respect to the assets and to identify treatment options for mitigating 
excessive risks. 

The overall objective of the two domains is protecting assets, by maintaining an 
acceptable level of security/risk to artifacts relevant to some requirements, requires us 
to identify mappable elements. In the risk assessment domain, a treatment is a process 
that will reduce the level of risks. In the requirement engineering domain, this 
corresponds to security goal and action; a security goal specifies what to prevent from 
the assets, and an action specifies how to fulfill the security goal. An important principle 
of the conceptual integration is not all concepts in each domain are shared or 
mappable. Therefore, changes on the element that is not part of the conceptual 
integration shall have no effect on the other domain. 
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There are, however, certain artifacts that nevertheless may serve as additional 
information to the other domain in the sense of explaining or providing the rationale for 
other elements. Changes to such artifacts in one domain should not have effect on the 
other domain, other than the effects that are captured via the shared and mappable 
elements.  

In the integration between requirements engineering and risk assessment, we include 
the achievement matrix and the risk matrix, respectively, as such explanatory 
elements. The achievement matrix is produced as a result of a requirements analysis, 
and specifies the continuity and the achievement level for each requirement. The risk 
matrix is used both in the input to and in the output from a risk assessment. As input, 
the risk matrix is used to define the risk evaluation criteria for each asset and the 
specification of acceptable risks. As output, the risk matrix is used to evaluate the 
identified risks and to document the changes of risk levels due to changes to the target 
system, including the implementation of treatments. Note that acceptable risks do not 
always lead to a “sufficient” level of the achievement matrix in the requirement model. 
For instance, there might be a situation where all risks are treated, but some 
requirements cannot be fulfilled because the organization lacks of required capabilities. 

An overview of the conceptual integration is given in Table 3. 

Requirement concept Risk concept Kind of integration 

Asset Asset Shared concept 

Security goal Treatment Risk concept mapped to 

requirement concepts 
Action 

Achievement matrix Risk matrix Risk concept mapped to 

requirement 

Table 3 Conceptual integration of requirement and r isk modeling 

6.2.2 Integrated Process 

In this section we present various options for integrating the respective processes of 
requirements engineering and risk assessment. The two processes should still be 
understood as separate processes with their own iterations, activities and techniques 
for managing change. The integrated process explains at which steps of the respective 
processes that the conceptual level interface can or should be invoked. The integrated 
process is hence based on the conceptual integration presented in the previous 
section. 

The integrated process presented here can be understood as an instantiation of the 
more general and project wide integration presented in deliverable D2.2. In this section 
we present a more detailed integration, however maintaining the consistency with the 
more high-level integration of D2.2. 

The integration of the requirements engineering process and the risk assessment 
process is based on the principle that the respective domains are oblivious to the 
elements of the other domain that are not part of the conceptual integration. This 
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means that whenever data is processed, model elements are modified, analyses are 
conducted, etc. in one domain, and these activities do not affect the elements of the 
conceptual integration, there is no need to interact with the other domain. 

For example, if the requirement engineers keep modifying and remolding satisfaction 
arguments for achieving functional goals while there are no changes to the assets, 
there is no need to invoke the risk assessment process. And if the risk analysts modify 
the risk models by including new threats and adjusting likelihood estimates, and these 
modifications have no effect on the treatments, there is no need to invoke the 
requirement engineering process. 

6.2.2.1 Overview of Process 

The UML activity diagram of Figure 32 gives a high-level overview of the integrated 
process. The diagram is divided into three partitions to distinguish between the 
activities and objects under the control of the user, the risk analyst and the requirement 
engineer. The user is typically the client commissioning the analyses, and may, for 
example, be the owner of the system that is the target of analysis. 

The integrated process is defined such that the risk assessment process and the 
requirements engineering process are conducted separately. Depending on the 
change request and the analysis needs, the respective processes may optionally 
invoke each other at different stages of the overall process. In the diagram, the 
diamonds specifies branching of the sequence of activities. When there is no guard 
condition on the branching (specified by the notes with Boolean expressions), the 
process proceed along one or both of the branches. This gives a wide flexibility on how 
the overall process may be conducted. Some of the potential scenarios that are 
described by the diagram are the following: 

• A change transaction is planned, and the user makes a change request that is 
passed to the risk analyst who is asked to update a previous risk assessment. 
The risk analyst uses the previous risk model (RiM before) and the change 
request as input to the risk assessment. As a result of the risk assessment, the 
risk analyst passes treatment options for unacceptable risks back to the user, 
and the process ends. 

• A change transaction is planned, and the user makes a change request that is 
passed to the requirement engineer who is asked to update a previous 
requirements analysis. The requirement engineer uses the previous 
requirement model (ReM before) and the change request as input, and updates 
the ReM. Based on the updated ReM, a requirements analysis is conducted. 
The results are passed back to the user, and the process ends. 

• The scenario is initiated as one of the previous ones, but during the process the 
risk analyst and the requirement engineer interact by invoking each other 
without going through the user. For example, the requirement analysts identify 
new assets that are passed to risk assessment, and the risk analysts report 
back by passing relevant treatments to the requirement engineer who updates 
the ReM accordingly before the requirements analysis is conducted. 
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Figure 32 Overview of integrated process 

We can think of the integrated process as interactions that are triggered by an external 
event, namely the change request from the user. When this change request is passed 
to one or both of the risk analyst and requirement engineer, there are a number 
iterations where the changes propagate back and forth between the two until a stable 
state (equilibrium) is reached and the results can be passed back to the user. 
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As seen from the diagram, it is the user that initiates and terminates the overall activity. 
For long-lived, evolving systems there may be many iterations of the overall integrated 
process, each of them triggered at different points in time. In the following we focus on 
a single iteration of the overall process (which of course may consist of several internal 
iterations without the user), explaining in more detail the integrated process. 

In the description of the integrated process, we assume that the risk analyst and the 
requirement engineer share a common representation and description of the target of 
analysis before the changes. Such a description may, for example, be a set of UML 
diagrams as exemplified by the documentation of the ATM target of analysis in the 
appendix of deliverable D5.3. Once the user has passed on the description of the 
change request, the interactions between the risk analyst and the requirement 
engineer in the integrated process is then conducted without consulting the user or 
other stakeholders/externals. 

In explaining the integrated process, we begin with the requirement engineer partition. 
The requirement engineer uses the previous requirement model (ReM before) and the 
change request to update the requirements model, producing ReM after. Based on the 
ReM after, new assets are extracted if relevant. At this point, the requirement engineer 
may invoke the risk assessment in order to have the risk analyst to identify related risks 
and pass back relevant treatments that should be taken into account in the 
requirements analysis. 

Receiving the extracted assets, the risk analyst use this input as a kind of change 
request and combines it with the previous risk model (RiM before) to conduct a new 
risk assessment. The risk assessment includes the identification of risks regarding the 
new assets, as well as the estimation and evaluation of these risks. For the 
unacceptable risks, a treatment identification is conducted. Without consulting the user, 
the risk analyst passes a specification of treatment options back to the requirement 
engineer who now proceeds. 

Using the treatments as input, the requirement engineer specifies corresponding 
security goals and actions to fulfill these. This yields a new update of the ReM, which 
serves as the basis for the requirements analysis. 

The requirement analysis must determine whether the achievement of the specified 
goals is acceptable. If it is acceptable, the requirement engineering process concludes 
and reports back to the user. If it is not acceptable, the requirement engineer must 
identify the problem. 

If there is a problem with the treatments, for example that some of the corresponding 
security goals cannot be fulfilled, the risk assessment is invoked with a request for 
alternative options for treatments. The risk analyst passes new treatments back, after 
which the requirement engineer makes a new update of the ReM and conducts a 
second requirement analysis. If there is a problem with the ReM, the requirement 
analyst must backtrack and search for an alternative way of updating the ReM when 
considering the change request that was initially passed from the user. 

6.2.2.2 Detailing the Process with the Rationales 

The most basic form of the interactions between the risk assessment process and the 
requirement analysis process is by the passing of assets from the latter to the former, 
and the passing of treatments from the former to the latter. In some cases this will 
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suffice for the respective processes to proceed with their respective activities. In other 
cases there is a need to include also the rationales for the artifacts that are exchanged. 

For example, when only a set of treatments is passed from the risk analyst to the 
requirement engineer, this may not suffice for the requirement engineer to determine 
how to most adequately update the requirement model, or to determine which 
treatments to select. The risk analyst can then specify for each treatment the set of 
assets for which the treatment provides protection. If even further rationales are 
required, the risk analyst can provide for each pair of treatment and asset the risk 
evaluation matrix where the estimated reduction of risk levels by implementing the 
treatment is documented. The risk matrix shows the reduction of risk level by depicting 
the reduction of likelihood and/or consequence, and also shows whether the levels of 
the risks are acceptable. 

Conversely, it may not be sufficient for the risk analyst to know the new assets alone. 
In order to determine the severity of identified risks, the risk analyst may need to know 
the priorities of the assets. For this purpose the requirement engineer can provide the 
achievement matrix for the goals, where the achievement matrix shows for each 
combination of continuity level and achievement level whether the combination is 
acceptable or not. 

6.2.2.3 External Integration 

As mentioned above, the integrated process described in this section can be 
understood as a more detailed instantiation of the integration of risk assessment and 
requirement engineering that is presented in deliverable D2.2. Whereas deliverable 
D2.2 explains the wider integration of design, testing, verification, risk assessment and 
requirements engineering, we focus here on the latter two. 

The UML sequence diagram of Figure 33 is adopted from D2.2 and shows a sample 
change story that illustrates the global integration. The change story is initiated by a 
change request from the user, and the subsequent interaction exemplifies how the 
change may propagate. We refer to D2.2 for a more detailed explanation.  
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Figure 33 Simple change story 

Comparing this sample of the global integration with the integrated process presented 
in this section, we see that the sample change story is supported by the latter. The 
main difference is that the integrated process described in this section is more detailed 
and supports a wider set of interactions. 

In the global setting we can conceive the integration of the risk assessment and 
requirements engineering as representing one artifact. Expressing this in the sequence 
diagram, we can compose the lifelines Risk Model and Requirements Model, thus 
representing the other artifacts, i.e. the other lifelines, as external to this local 
integrated process. This composition is illustrated by the sequence diagram of Figure 
34 with the lifeline RiM&ReM. 

In this diagram we have purposely hidden the internal messages of the RiM&ReM 
lifeline to convey that the internal interactions can be any of those that are supported 
by the integrated process as described by the activity diagram of Figure 32. 
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Figure 34 Integrated process in the global setting 

In this global setting, we can understand the interaction with the other artifacts as an 
instantiation of the global integration. From the global perspective, the initial change 
request triggers a sequence of activities, possibly with several iterations, that should 
result in a stable state (global equilibrium). From the local perspective of the 
RiM&ReM, any input from the other lifelines are external input that triggers an internal 
sequence of activities that should result in a local equilibrium before the results are 
propagated externally. During the global process that continues towards global 
equilibrium, it may be that the RiM&ReM integrated process is invoked anew. In that 
case, the integrated process should again reach a local equilibrium before the global 
process continues. 

6.2.3 Application to ATM Case Study 

In the following we illustrate and exemplify some of the steps of the integrated process 
of risk assessment and requirements engineering. We address the Air Traffic 
Management (ATM) case study, and particularly the change requirement of 
Organizational Level Change. 

6.2.3.1 Change Requirement and Security Properties 

The Organizational Level Change introduces changes both at process and at 
organizational level.  At organizational level, the AMAN supports the Sector Team by 
providing sequencing and metering capabilities for a runway, airport or constraint point, 
the creation of an arrival sequence using ‘ad hoc’ criteria, the management and 
modification of the proposed sequence, the support of runway allocation at airports 
with multiple runway configurations, and the generation of advisories for example on 
the time to lose or gain, or on the aircraft speed. The Sector Team consists of two Air 
Traffic Controllers (ATCOs), namely the Tactical Controller (TCC) and the Planner 
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Controller (PLC). The Sector Team is responsible for managing the air traffic of an 
allocated sector of the airspace. 

The introduction of the AMAN requires the addition of a new type of ATCO, called 
Sequence Manager (SQM), who will monitor and modify the sequences generated by 
the AMAN and will provide information and updates to the Sector Team. The SQM 
replaces the ATCO role of Coordinator (COO) before the Organization Level Change. 

In addition to the introduction of the AMAN, we consider the adoption of the Automatic 
Dependent Surveillance Broadcasting (ADS-B) which is a GPS-based system for 
determining aircraft positions. 

The security properties we consider are Information Protection and Information 
Provision. For the purpose of keeping the example simple, we restrict Information 
Protection to the confidentiality of ADS-B data, and we restrict Information Provision to 
the availability of arrival sequences. In the example, we often refer to these simply as 
confidentiality and availability, respectively. As the ADS-B is introduced as part of the 
changes, we address only the availability property before the changes. We address 
both availability and confidentiality after the changes. 

For more detailed descriptions of the target of analysis and the changes, we refer to 
D1.1 and to the appendix of D5.3. 

6.2.3.2 Requirement and Risk Modelling before Chang e 

We assume that the requirement model for the ATM system before the introduction of 
AMAN is the one illustrated in Figure 35. The model consists of four main actors, 
namely the TCC, the PLC, the Radar and the Flight Data Processing System (FDPS). 
The asset in the requirement model is the availability of the arrival sequence manually 
computed by the PLC.   
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Figure 35 Requirement Model before the introduction  of the AMAN 

On the risk assessment side, the risk analyst has previously conducted and 
documented a risk assessment before the changes. The threat diagram of Figure 36 
shows a sample of the documentation of the risks that were identified. 
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Figure 36 Risk Model before the introduction of the  AMAN 

The threat diagrams documenting the risks before the changes address the availability 
asset, as this is the only asset that is considered at this point. The threat diagrams 
furthermore document the results of the risk estimation by the likelihood and 
consequence annotation. For example, the unwanted incident of degradation of aircraft 
(A/C) position data occurs with likelihood possible and has a minor consequence for 
the availability asset. The likelihood and consequence in combination determines the 
risk level. 

6.2.3.3 Requirement and Risk Modelling after Change  

 

 

Figure 37 Requirement Model after the introduction of the AMAN 



 

 D.3.2 Methodology for Evolutionary Requirements | version 3.18 
| page 93/137 

 

The user (e.g. the designer or the ATM service provider) decides to introduce two new 
components to the ATM system, namely the AMAN to support the PLC in the 
computation of flights arrival sequences, and the ADS-B provides more highly accurate 
information about aircraft position. The change request submitted by the user requires 
the previous requirement model to be updated with the introduction of two new actors, 
the AMAN and the Sequence Manager as illustrated in Figure 37. 

The ADS-B has several benefits for air traffic management, but it raises several new 
security concerns; the ADS-B transmissions can be easily corrupted, and the signal 
can moreover be eavesdropped as they are openly broadcasted. Thus, because of the 
introduction of the ADS-B, we consider also the asset of confidentiality of the 
surveillance data provided by the ADS-B. 

After having updated the requirement model and extracted the new asset, the 
requirement engineer decides to invoke the risk assessment in order see if there are 
new treatments that should be taken into account in the requirement model given the 
change requirement and the new asset. 

According to the integrated process, the requirement engineer provides the list of 
assets to the risk analyst to help him in identifying the target of analysis and the assets. 
We assume that the risk analyst previously has conducted and documented a risk 
assessment before the changes, and that the risk analyst has access to the 
specification of the change requirement provided by the user. The new asset that is 
passed from the requirement engineer serves to increasing the details of the target 
description and in more precisely defining the focus of the risk assessment after the 
changes. 

Based on the risk models before the changes, the description of the change 
requirement, as well as the new asset that is passed from the requirement engineer, 
the risk analyst updates the risk assessment documentation. The risk assessment is 
conducted by following the method for the risk assessment of changing systems as 
described in D5.3. 

 
 

Figure 38 Risk Model after the introduction of the AMAN 
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The threat diagram of Figure 38 shows a sample of the results of the updated risk 
identification and risk estimation. The diagram models the changes to risks by 
distinguishing between risks before changes and risk after changes. The two-layered 
elements are aspects that are present both before and after, whereas the other 
elements are aspects that are present only after the changes. 

 
 

Figure 39 Treatment options after the introduction of the AMAN 

 
 
 

Figure 40 Treatment options after the introduction of the AMAN 

From the before-after threat diagram we see that the unwanted incident of degradation 
of A/C position data occurs both before and after the changes. The likelihood is 
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possible both before and after, and the consequence for availability is minor both 
before and after. The unwanted incident of leakage of critical A/C position data occurs 
only after the changes, and has consequence for the asset of confidentiality that was 
passed from the requirement engineer. 

After the risk assessment is concluded, the risk analyst identifies and documents 
treatments for the unacceptable risks, addressing risks for both of the assets. Some of 
the identified treatments are documented in the treatment diagrams of Figure 39 and 
Figure 40. 

According to the integrated process, the risk analyst passes the treatment options to 
the requirement engineer. Focusing on the asset of confidentiality that the 
requirements engineer initially passed to the risk analyst, the requirement engineer 
conducts an update of requirement model of Figure 37. The resulting requirement 
model is illustrated in Figure 41 to by adding the action “Encrypt Data” that fulfills the 
security goal “Confidentiality” which protects the resource “Surveillance Data”. 

 

Figure 41 Requirement model updated with treatment actions 
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6.3 Integration of Requirements Engineering with 
Design 

Industrial Requirements Management tools such as DOORS T-REK enable to manage 
the elicited requirements by providing an efficient traceability with the Product 
Breakdown Structure, that is to say the elements of the system. 

Model Driven Engineering brings new Design tools that provide new means to assess 
the architecture by validating properties on the model. Security is considered as a non-
functional property of the system leading to specific constraints or needs to which the 
system must conform. 

The interaction between WP3 and WP4 lies in the way security requirements are used 
to influence system design, and how the conformance of the system with respect to the 
high-level security objectives is evaluated. 

An integration is proposed by the Security DSML developed at Thales after EU-FP6 
Modelplex project. This tool shall be regarded as a security viewpoint of a system 
model design tool in the sense where viewpoint is intended as a technology to provide 
non functional properties tooling integrated to a system engineering workbench, and as 
it is studied in French research project Movida (ANR – Call 8). 

Security DSML focuses on a risk management process at system design phase, which 
provides security requirements as output. Starting from a model design, the Security 
DSML tooling enables to perform a risk analysis. The management of the risks leads to 
define Security Objectives, which are in their turn refined in Security Requirements. 
These security requirements lead to an evolution of the model since security solutions 
shall be implemented to complete or make the model evolve. 

 

 

The WP3-WP4 link is demonstrated in D4.2 on the ATM use case of the introduction of 
the AMAN, which addresses the Organizational Level Change and at least the 
Information Access and Information Protection security properties. 
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The exchange of information between the requirement and system models is illustrated 
with a role-based access control setting. In the Thales methodology, information flows 
naturally from requirements to system design through semi-formal contractual 
requirement specifications managed with DOORS T-REK. However, dealing with the 
opposite direction, that is verifying that requirements are actually met by a system and 
that they are complete with respect to high-level security objectives are difficult tasks 
that are not automated in general. We show how UMLseCh can be used to help with 
the latter in a simple example. The scenario developed in D4.2 purposely presents an 
incomplete set of requirements derived through a flawed risk analysis, and then how 
UMLseCh detects and identifies those shortcomings. This allows the introduction of 
additional requirements to the system. 

Industrial practices are still highly informal therefore formal verification is not feasible in 
general. What can be reasonably achieved, however, is a traceability link between 
requirements and system elements, such that any evolution in one of the models 
triggers a notification in the other. This is a crucial element to ensure the consistency of 
the models, which is all the more important that it involves distinct areas of expertise 
and consequently distinct actors. 

Further description of the integration proposed by Thales fits in D4.4 prototype. 

6.4 Integration of Requirements Engineering and 
Testing 

The SecureChange process aims at developing an overall approach to the engineering 
of secure, life-long and evolvable systems. Methods and techniques for requirements 
engineering is only one of the cornerstones of the overall approach, and in the wider 
setting of security engineering of changing and evolving systems the requirements 
engineering constitutes one part of the overall process. 

Moreover, in the setting of changing and evolving systems, there is a need to 
understand not only how the changes may affect security requirements on one hand 
and testing models on the other hand; we also need to understand how changes to 
requirements affects test models, and how the propagation of changes from the one to 
the other should be dealt with in a systematic way. 

We address the problem both at a conceptual level and at a process level. At the 
conceptual level we present an integration of concepts and explain how requirements 
artifacts should be mapped to test artifacts and vice versa. At the process level, we 
utilize the conceptual level integration and explain how the conceptual integration 
comes into play in the integration of the respective methodologies. 

We illustrate and exemplify the integrated process based on the Specification Evolution 
Change Requirement of the POPS case study. 

6.5 Conceptual Integration 
In this section, we describe how the SeCMER conceptual model concepts are mapped 
on the test concepts for the purpose of integration so to identify an interface between 
the two domains. 
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In the following we first separately present the core and basic concepts of requirements 
engineering and testing. Thereafter we present the conceptual level integration. 

6.5.1 Requirement Concepts 

The UML class diagram of Figure 42 gives an overview of the basic concepts of 
requirements engineering and the relations between them. We refer to Section 2 for a 
detailed presentation of the conceptual model. In the following we give the definitions 
of the concepts. 

  

 
Figure 42 Basic requirements concepts 

• Action:  An entity performed by an actor, which can generate events, and can 
have preconditions and post‐conditions 

• Actor:  An entity that can act and intend to want or desire 

• Asset:  An entity of value that can be owned and used 

• Goal:  A proposition an actor wants to make true 

• Proposition:  A statement that can be true or false 

• Resource:  An entity without intention or behavior 

• Security goal:  A proposition that specifies how to prevent harm to an asset 
through the violation of confidentiality, integrity, and availability security 
properties 

• Situation:  partial state of the world described by a proposition 
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• Requirement: Statement about what the system should do 

• Test Model:  Dedicated model for capturing the expected SUT behavior (Class 
diagram, State machine) 

• Test Case:  A finite sequence of test steps 

• Test Intention:  User's view of testing needs 

• Test Suite: A finite set of test cases 

• Test Script: Executable version of a test case 

• Test Step:  Operation's call or verdict computation 

• Test Objective: High level test intention 

6.5.2 Integration 

In the conceptual integration we distinguish between what we refer to as shared 
elements on the one hand and mappable elements on the other hand. The shared 
elements are concepts that are common to requirements engineering and testing, with 
the same semantics in both domains. The mappable elements are concepts from one 
domain that are not shared by the other, but are nevertheless related to the other 
domain and can be mapped to concepts of the other domain. 

We identify one share element that is Requirement. A Requirement in both domains 
represents a statement by a stakeholder about what the system should do.  

The concepts of Actor, Goal and Action are mapped on the Test Model. In particular, 
the concept of Actor is used to identify the system under test (SUT). The concept of 
Goal and Action are used by the testing engineer to build the Test Model which 
represents the expected behavior of the SUT. The Test Model is usually represented 
using UML Class Diagrams, Instance Diagrams and State Machine Diagrams. The 
dynamic behaviors of those diagrams are described using OCL (Object Constraint 
Language). The goals and actions in the Requirement Model are identified by a unique 
name that is used to annotate the State Machine of the Test Model and the OCL code 
in order to achieve traceability between the Requirement Model and the Test Model. 

In the integration between requirement engineering and testing, we also use the 
artifacts achievement matrix and test results.  The achievement matrix is produced as 
the result of requirement analysis, and specifies the continuity and achievement level 
for each requirement. A test result is the outcome of the execution of a test case which 
can be fail, pass or inconclusive. The test results are used to determine the level of 
requirement coverage.  If the test result for a given test case is “fail” or “inconclusive” 
the corresponding requirement under test is not satisfied by the SUT or it is not 
correctly implemented.  

An overview of the conceptual integration is given in Table 1. 

 

 

 

Table 4 Conceptual Integration 
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Requirement concept  Testing concept  Kind of integration  

Goal Test Model (State 
Machine, OCL code) 

Requirement concept 
mapped to Testing concept  

Action Test  Model (State 
Machine, OCL code) 

Requirement concept 
mapped to Testing concept 

Achievement matrix Test result Requirement concept 
mapped to Testing concept  

Actor SUT Requirement concept 
mapped to Testing concept 

  

Requirement Requirement Shared concept 

 

6.6 Integrated Process for Change Management 
In this section we present the integration between requirements engineering and 
testing engineering processes. The two processes should still be understood as 
separate processes with their own iterations, activities and techniques for managing 
change. The integrated process explains at which steps of the respective processes 
the conceptual level interface can or should be invoked. The integrated process is 
hence based on the conceptual integration presented in the previous section. 

The integrated process presented here can be understood as an instantiation of the 
more general and project wide integration presented in deliverable D2.2.  

6.6.1 Overview of Process 

The UML activity diagram of Figure 42 gives a high-level overview of the integrated 
process. The diagram is divided into three partitions to distinguish between the 
activities and objects under the control of the user, the requirement engineer, and the 
test engineer. The user is typically the client commissioning the testing and may, for 
example, be the owner of the system that is under test. 

The integrated process is defined such that the requirements engineering process and 
the testing process are conducted separately. In the diagram, the diamonds specifies 
branching of the sequence of activities. When there is no guard condition on the 
branching (specified by the notes with Boolean expressions), the process proceeds 
along one or both of the branches. This gives a wide flexibility on how the overall 
process may be conducted.  
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Figure 42.  Integrated process 

The process starts when the user makes a change request that is passed to the 
requirement engineer. The requirement engineer uses the previous requirement model 
(ReM before) and the change request to update the requirement model, producing 
ReM after. Based on the ReM after, new actors, goals and actions are extracted if 
relevant. At this point, the requirement engineer may interact with the test engineer in 
order to have the test engineer to identify which are the part of the test model that are 
affected by the change in the requirement model. Then, the testing engineer checks 
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which tests are reusable or are obsolete and if there is the need to produce new test 
cases.   

If this is the case the new tests are executed and the result of the execution is passed 
back to the requirement engineer that should take them into account in the 
requirements analysis. 

The requirement analysis must determine whether requirements have been fulfilled 
based on the test results. If all the test results are successful, the requirements are all 
satisfied and, thus, the requirement engineering process concludes and reports back to 
the user. If some of the requirements are not fulfilled by the SUT, the requirement 
engineer must identify the problem. 

If there is a problem with the ReM, the requirement analyst must backtrack and search 
for an alternative way of updating the ReM when considering the change request that 
was initially passed from the user. 

If there is a problem with testing, the test engineer must determine whether there is the 
need to produce new test cases or not.  

The UML sequence diagram of Figure 43 is taken from D2.2 and shows a sample 
change story that illustrates the global integration. The change story is initiated by a 
change request from the user, and the subsequent interaction exemplifies how the 
change may propagate. We refer to D2.2 for a more detailed explanation.  

 

 
Figure 43 Simple change story 
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Comparing this sample of the global integration with the integrated process presented 
in this section, we see that the sample change story is supported by the latter. The 
main difference is that the integrated process described in this section is more detailed 
and supports a wider set of interactions. 

6.7 Application to POPS Case Study 
In the following we illustrate and exemplify some of the steps of the integrated process 
of testing and requirements engineering based on change requirement “Specification 
Evolution” of the POPS case study.  

6.7.1 Change Requirement 

The Specification Evolution Change Requirement is about the changes in the card life 
cycle that have been introduced in GP 2.2 with respect to GP 2.1.1. The card life cycle 
differences in the two versions of GP specification are illustrated in Figure 44.  

 
Figure 44 Card Life Cycle in GP 2.1.1 and GP 2.2 

The main differences between the two GP specification versions are that in GP 2.2 not 
only the Issuer Security Domain can perform any state transition in the card life cycle 
but any Privileged Security Domain and that a Privileged Application can terminate the 
card from the CARD-LOCKED state.   
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6.7.2 Requirement and Test Modeling for GP 2.1.1  

The requirement model for Card Lifecycle Management of Global Platform 2.1.1 is 
illustrated in Figure 45. The model consists of four actors namely: OPEN (Global 
Platform Environment), Privileged application, Privileged SD (Security Domain), and 
Issuer SD (ISD). Privileged application can only terminate card lifecycle by setting card 
status from any state (except CARD_LOCKED) to CARD_TERMINATED. Additionally, 
privileged application can lock the card by changing card state from SECURED to 
CARD_LOCKED. Security Domain is a special kind of privileged application, and 
therefore, has exactly the same behavior of privileged application in terms of card 
lifecycle management. The other transitions in the card life cycle can only be 
performed by the ISD. 

 

Figure 45 Requirement Model for GP 2.1.1  
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Figure 46 Test Model for GP 2.1.1  

Figure 46 depicts the state machine for the card lifecycle in GP 2.1.1. For the sake of 
this example we only focus on Goal G5 (Set card state to TERMINATED). This goal is 
detailed in 3 transitions (colored in red) of the state machine. They provide test cases 
for 4 sub goals: G8, G11, G12 and G13. 
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Figure 47 OCL code for transition from CARD_LOCKED t o TERMINATED 

 

Figure 47 shows how the OCL code for the transition from the status CARD_LOCKED 
to the status TERMINATED in the State Machine has been tagged with the names of 
the goals G11 and its sub goals G8 and G12 that are part of the requirement model in 
Figure 44. 
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Figure 48 OCL code for setStatus APDU command for Pri vileged Application 
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Figure 49 OCL for setStatus APDU command for Privilege d Security Domain 

Figure 48 and Figure 49 provide a test model for goal G13 that is divided in two 
separate transitions, one for an issuer SD and one for an application with 
cardTerminate privilege. 

6.7.3  Requirement and Test Modeling after Change 

Figure 50 describes the requirement model for Card Lifecycle Management in GP 2.2, 
where the actors are same as of GP 2.1.1. There are two changes in card lifecycle 
management. First, privileged application can now terminate card lifecycle from any 
state if the application has appropriate privileges. Second, a security domain is more 
powerful since it can now perform all card state transitions which can only be done by 
issuer security domain in the previous version.  
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Figure 50 Requirement Model for GP 2.2 

Figure 51 depicts the test model for card lifecycle in GP 2.2, with specific transitions 
red colored. They provide test cases for Goal G5. They are detailed in the OCL code 
reported in Figure 52 and Figure 53. The two figures reflect the difference between two 
types of actors: an application with cardTerminate privilege and a SD with 
cardTerminate privilege. 

 

 

Figure 51 Test Model for GP 2.2  
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Figure 52 OCL code for setStatus APDU command for pr ivileged application 
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Figure 53 OCL code for setStatus APDU command for pr ivileged SecurityDomain  

According to the integrated process, test results from test cases of two models in both 
GP 2.1.1 and GP 2.2 are fed back to the requirement engineer. Then he can evaluate 
the coverage of requirements and test results are propagated to the corresponding 
goals to estimate their satisfaction.  

In POPS case study, all the tests are reported as successful. Hence, full requirement 
coverage is achieved. 
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7 Evolution of Security Models 

This section discusses various concepts associated with the notion of change. To 
avoid restricting the generality of the change model, it will not be bound to 
requirements modeling, but to the Integrated Model introduced by WP2 in D.2.1, 
consisting of requirement, architectural, risk, etc. domain models. In a passive view of 
the classification, model snapshots are observed to change over time. The change 
model will show the properties and relationships of model snapshots, and the different 
kinds of changes that span between them. 

The first part of the Section introduces our proposed generic, domain and application 
independent Change Model. The second part discusses a concrete industrial change 
model used by Thales to manage the changes to requirements and related models. We 
also provide a mapping between the two different terminologies.  

7.1 Generic Model of Change Concepts 
This Section identifies a number of concepts to describe changes experienced by an 
engineering model. An UML Package representation of the concepts discussed here is 
presented in Figure 54.  

 

Figure 54 Change Concepts 
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7.1.1 Integrated Model 

Before discussing change, we have to find a representation for the engineering model 
that are subject to change. Borrowing from the terminology of WP2, we use the 
concept of Integrated Model  to refer to the set of engineering models from various 
domains (Architecture, Risk, Requirements, etc. interlinked through traceability) as a 
single entity. An Integrated Model instance represents a single snapshot of these 
models and their linkages. 

From the point of view of model versioning and change history, each Integrated Model 
snapshot assumes a certain role . As this role itself can change also, the set of possible 
roles form the state machine depicted in Figure 55. The model snapshot that 
represents the current reality is the Realized  model. If reality changes and a new 
Realized model emerges, the older version is marked as Replaced . Unrealized model 
snapshots that are created for analyzing possible uncontrolled (provisional, expected) 
future changes have the Anticipated  role, while a model that show the result of a 
candidate outcome of a deliberate decision is a Planned  model. Both kinds can be 
Realized eventually, or Abandoned  otherwise. If security deficiencies, inconsistencies 
or other problems are discovered in a Realized, Planned or Anticipated model (either at 
the creation of the snapshot or later), and it would have to be superseded by newer 
versions to address the problem, the model is marked Transient .  

 
Figure 55 State Machine of Roles of an Integrated Mo del 

7.1.2 Change 
The key concept of the Change Model is Change . A Change instance represents the 
updating (or planning to update) of an Integrated Model. The snapshot that is updated 
is called the preState  of the Change, while the resulting model is the postState . 
Sometimes the Change encompasses several options  (alternatives that the engineers 
or outside forces can choose from) leading to different postStates; each option is a 
single ChangeStep . A timestamp  can also be associated to the Change.   
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As indicated by the intent  attribute, some Changes are Requested  by stakeholders, 
others are passively Observed  and cannot be influenced, while the rest are Reactive  
changes driven by engineers to restore desired properties of the model after earlier 
changes. On a related note, a Change can have a single triggering Change Event  that 
is the cause of the Change, but it is possible that no trigger is identified for an 
Observed change. An optional focus  attribute tells us conceptually what type of 
information is subjected to Change: either our Knowledge  about the system and its 
context is changed, or our Assumptions  are changed, or the change is in the Scope  
of the analysis producing the model, or it reflects a design Decision  being made or 
revised.  

7.1.3 Change Line and Change Step 

A Change Line  describes a longer trajectory from a single preState  model to a single 
postState  model, through several successive intermediate models. It also contains the 
Changes that happen between each model (except the postState) and its successors. 
The Changes can even have Abandoned options. 

A Change Step  is the transition from a single preState model to a single postState 
model. Each option of a Change is described by a Change Step. The revolution  
attribute indicates whether the step is considered evolutionary (gradual change over 
time) or revolutionary (large parts of the model removed and/or created from scratch). 
Based on granularity, there are two kinds of Change Steps. An Opaque Step  does not 
contain any further information about how the postState is derived from the preState. It 
is also possible, on the other hand, to consider a composite step that consists of 
intermediate stages, changes between them, or even explored and rejected 
alternatives; therefore the previously introduced Change Line is also one kind of 
Change Step. Furthermore, it is possible to use these composite steps as options for a 
Change, as well as the opaque ones; this way a long engineering process of 
considering alternatives and their consequences can be condensed into the best and 
final version. 

Refer to Section 7.1.5 for an illustration of how the concepts of Change Line, Change 
Steps and the options of a Change are related to each other. 

7.1.4 Change Event 

While some Observable Changes may have an unknown cause, the majority of 
Changes are triggered by a well-defined Change Event . Some Change Events are 
initiated externally; others are caused by previous changes to the model, so that a new, 
Reactive Change is triggered by the Change Step leading up to its preState. If the 
reason of the Change Event is associated with security concerns, it can be marked as 
securityDriven ; the triggered Change in this case is especially in the focus of 
SecureChange. 

We distinguish four kinds of Change Events.  

• A Time Event  is triggered by reaching a certain point of time; e.g. a pre-
scheduled revision of security risks after one year of operation, or a periodical 
renewal/replacement of supplier Actor contracts.  
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• An Operation Event  is a human intervention into the system, e.g. a stakeholder 
requesting new functionality.  

• A Notification  represents the elementary model manipulations performed by 
the previous Change Step: addition, deletion, attribute modification, replacing, 
etc. depending on the modeling technology used.  

• Alert  is a higher level mechanism that conveys a more abstract, domain-
specific report of the modifications performed by the preceding Change Step.   

7.1.5 Illustrative Example 

This Section illustrates the introduced concepts by an example evolution story.  

A fraction of the lifecycle of an Integrated Model is shown on Figure 56.  

1. At the beginning, there is stable version of the model.  

2. Due to an uncontrolled change in circumstances (e.g. a new regulation), an 
Observed Change happens (without offering multiple options), leading to a 
postState Integrated Model. As opposed to the initial snapshot, the new model 
has some security problems, that are indicated by Alerts.  

3. They trigger a Reactive Change to fix the problems in this Transient state. The 
Change has two options, corresponding to design alternatives. Each option is 
defined by an Opaque Step leading to a different Planned version of the 
Integrated Model.  

4. However, one of the proposed solutions raises further security issues, so it also 
becomes a Transient state. A second Reactive Change with a single option is 
initiated, leading to a final and consistent Planned model.  

 

 
Figure 56 Example evolution, phase one (exploring al ternatives) 

Before a decision can be made between the two viable choices, the set of final 
candidate solutions has to be represented as the options of the first Reactive Change. 
One of the options is an Opaque Step leading to a problem-free Integrated Model. As 
the other immediate Opaque Step only leads a Transient version, it can be wrapped 
together with the next successive one as a Change Line, leading all the way to the 
candidate solution from the first Transient state. This way, the sequence of 
intermediate stages (the second Transient model in this case) can be collapsed and 
abstracted away. The first Reactive Change will have two options, an Opaque Step 
and a Change Line, leading to the two candidate solutions. This makes the Change 
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with multiple options ready to support the decision. The new state is indicated in Figure 
57.  

 
Figure 57 Example evolution, phase two (reduced to s table candidates) 

Finally, a decision is made and one of the options is selected. The disfavored 
Proposed model becomes Abandoned. The chosen solution is implemented, and the 
corresponding model becomes Realized. The superseded snapshot will be marked as 
Replaced. This whole period of evolution is condensed into a Change Line leading 
from the old reality to the current one, hiding obsolete details, as indicated in Figure 58.  

 
Figure 58 Change Line, phase three (after decision)  

7.2 Definition of Change Control 
Based on the generic notions of change introduced in Section 7.1, we now introduce 
our terminology regarding the mechanisms of change control. An UML Package 
representation of the concepts discussed here is presented on Figure 59.  
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Figure 59 Definition of Change Control Facilities 

7.2.1 Change Handler 

A key concept of change control is Change Handler , which governs the changes over 
the lifetime of a system. The Change Handler is composed of the body of engineers of 
various domains (risk analysts, system architects, verification experts, etc.) and the 
entirety of automated mechanisms and other supportive technology at their disposal. 

We use a control theory metaphor, in which the Change Handler entity acts as a 
controller, observing and reacting to Changes, as well as performing Changes itself. In 
accord with this metaphor, the two control mechanisms of great importance are called 
the sensors and actuators provided by the Change Handler.  

7.2.2 Change Sensor 

The role of Change Sensor s is to monitor Changes (Observed, Requested and 
Reactive alike) and Change Steps, compare the preState against the postState, filter 
the large volume of elementary Notifications; and raise high-level Alerts when security 
problems are detected. These Alerts can trigger Reactive Changes to correct the 
issues in the Transient model.  

The Graph Change Pattern (GCP) formalism that will be introduced in Section 4.5, as 
well as the Change Scenario concept related to the Change Pattern approach of WP2 
can be regarded as examples for automated Change Sensor formalisms.  
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7.2.3 Change Actuator 

While Alerts produced by Change Sensors and other Change Events define when a 
Change is necessary, the role of a Change Actuator  is to define how to change the 
model, what the proposed Change (Steps) should be. As discussed earlier, Change 
Steps can either be composite Change Lines or Opaque Steps; the contents of the 
latter can be defined by a Change Actuator. When providing Reactive behavior, a 
Change Actuator can be associated with a guard  Change Sensor that raises the alerts 
that the actuator will react to.  

Some Change Actuators are Human Actuators , reflecting decisions and proposals 
made by a board of engineers and experts. It is also possible to employ software 
components that can draft proposed modifications, typically specializing in Reactive 
interventions; these are Automated Actuators . 

The Evolution Rules formalism that will be introduced in Section 4, as well as the 
Guidance concept related to the Change Pattern approach of WP2 can be regarded as 
examples for Automated Actuator formalisms.  

7.3 Correspondence of Change Model Concepts 
The various Work Packages of SecureChange use their own concepts to model 
change and to represent the aspects of change that are used in their methodology and 
perspective. Figure 60 shows the correspondence of the concepts used in various WPs 
(as well as the Thales change model presented in Appendix A.4) with the concepts of 
the generic model introduced here. The first column lists those concepts that were 
introduced here, but also have an exact or loose equivalent defined by another WP or 
the Thales model. The second column lists the numbers of WPs that have a similar 
concept (or T for Thales), and the respective local names are shown in column 3.  
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Generic Change Concept  WP  WP-specific Concept  

Integrated Model  2 | T  Integrated Model | Static Model  

Realised / Planned 2  realised / planned  

Planned, Anticipated 2,5 ~before-after perspective 

Change Line  T  Change Line  

revolution  4,5,7  Evolution/Revolution  

Change  2  Change Transaction  

Reactive 2,4,5,T ~ maintenance perspective 

Observed 4 ~ unplanned perspective 

Observed / Requested  2  Change Log / Change Request  

Change Focus  5  ~ “Change Kind”  

Change Step  T  Change  

Change Event  2, T  Change Trigger / Change Event  

securityDriven  4  “Change Kind”  

Time Event  2  “time events”  

Operation Event  2  “action events initiated by the stakeholders” 

Notification  2  “change events caused by the 
modification/creation/deletion of some model 
element” 

Alert  2  “conditions on the system state” 

Change Control 2,4,5,T ~ continuous perspective 

Change Sensor  T  Evolution Function  

Figure 60 Correspondence of Change Concepts 
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8 Conclusions 

In summary, this report has described SeCMER, a requirements engineering 
methodology for addressing evolutionary security goals. The approach is grounded in 
the Jackson-Zave framework and has three interleaving stages: requirements 
elicitation, argument analysis and requirements evolution.  

For the requirements elicitation stage, we have proposed a meta-model of evolving 
security requirements, and a light weight process, aided by a tool, to support elicitation 
of requirements. 

For the argument analysis stage, we have proposed a meta-model of arguments, 
which has been implemented in our OpenPF tool to support arguments visualization, 
formalization of arguments using proposition logical to check the validity of rebuttal and 
mitigation relationships between arguments, and formalization of arguments using the 
Event Calculus to reason about arguments using deductive and abductive reasoning. 

For the requirement evolution stage, we have proposed a meta-model of evolution 
rules, and implement them in order to detect and apply incremental changes to the 
requirement models. The formalizing and computation aspects of the transformation 
have also been discussed. 

We have discussed how these three stages relate to each other, and apply the whole 
methodology to a significant example from the ATM case study.  

Furthermore, we have discussed how our methodology integrates with the process and 
architecture, risk, and design methodologies developed in the SecureChange project, 
whilst also providing a survey of how the notion of change is used in different 
SecureChange methodologies.  
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Glossary 

A claim is a (probably grounded) 

predicate whose truth-value will be 

established by an argument, 30 

A goal is a concept found in GORE 

approaches, and represents a 

proposition an actor wants to make 

true, 26 

A proposition is an object 

representing a true/false 

statement, 25 

A resource is an entity without 

intention or behavior, 26 

A situation is a partial state of the 

world described by a proposition 

(its description in [11]), 25 

An action is an entity performed by 

an actor, which can generate 

events, and can have preconditions 

and post-conditions, 26 

An actor is an entity that can act and 

intend to want or desire, 26 

An argument contains one and only 

one claim. It also contains facts and 

rules in domain knowledge, 30 

An asset is an entity of value that can 

be owned and used, 26 

Domain is specialized into Actor, 

Action, Asset, and Resource, 26 

Domain Knowledge is a set of 

ungrounded predicates that can be 

evaluated to true or false once the 

values of all terms in the predicates 

are known, 31 

Facts are grounded predicates -- 

something that is either true or 

false where terms in these 

predicate must be constant, 30 
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A. Appendix: State of the Practice 

In this section we present the Thales industrial method for security risk analysis, and 
we show the analogies with our methodology for security goals elicitation and analysis. 
Thales method aims at supporting the analysis and assessment of security risks for a 
system, and the specification of requirements for security measures to address those 
risks.  

A.1. THE SECURITY RISK ANALYSIS METHOD : PRINCIPLES  
Our prospective security risk analysis method builds upon model-based engineering 
methods and techniques. All activities of our method are organised around the building 
and usage of models, that is formalised, precisely defined, interconnected and 
integrated representations of the objects under study.  

As represented in Figure 61 our proposed method relies on the development of a 
modelling framework that combines in a synchronised way a set of models that 
constitute separate viewpoints over the engineering problem: 

 
Figure 61 The security analysis method in Thales co ntext – big picture 

• The System architecture model contains the architectural design of the system; 
this model is developed within the mainstream engineering processes, along at 
least two dimensions: the functional/logical architecture of the system 
(functional capacities and data to be realised by the system) and the physical 
/implementation architecture of the system (actual hardware and software 
components that realise the functional capacities). 

• The Business need model captures a representation of the business context for 
the system: business process that is supported, underlying business 
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organisation, business objects, key performance indicators, strategic drivers, 
etc. 

• The Risk analysis model and security objectives model capture the results of 
the security risk analysis method that is proposed in dedicated DSML 
(presented in next section). These models include a representation of the 
system architecture that is relevant to the needs of the security analyst, this 
model is called context model. This model is traced back and maintained in 
synchronisation with the system architecture model (see XXX). The security risk 
analysis information is defined as annotations or related new concepts added 
over the system architecture elements. The risk analysis model and security 
objectives model may also be traced to elements of information defined in the 
Business need model. 

• The Requirement Database captures all kinds of systems requirements 
(Security, Safety, Maintainability, Cost, etc.). Security goals are derived from 
security objectives model of dedicated DSML (see XXX). This mapping enables 
to add security goals with other kind of requirement addressed for a complex 
system. Requirement Database is traced back and maintained in 
synchronisation with the system architecture model and Business need model.  

The System architecture model and the Business need model are part of architecture 
modeling framework that we are developing to address service-oriented types of large-
scale enterprise integration systems or systems of systems. In the Thales context, the 
official database of Requirement Management is Rational DOORS with the T-REK 
add-ons. 

A.2. DOORS T-REK 
Rational DOORS XXX (Dynamic Object Oriented Requirements System) provides: 

• A requirements Database that allows all stakeholders to participate in the 
requirements process 

• The ability to manage changing requirements with RCM Tools (Requirement 
Change Management) 

• Powerful life cycle traceability to help teams align their efforts with the business 
needs and measure the impact that changes will have on everything from 
business goals to development 

• Links requirements to design items, test plans, test cases and other 
requirements for easy and powerful traceability 

• Automatic generation of traceability matrix. 

• Automatic document generation of DOORS module into MS WORD format 
(.doc). 

As suggested by Figure 62, a DOORS project is composed by two kinds of modules:  

• Formal Modules gather requirements information and is used for Requirement 
Specification. One Requirement is considered as one object which contains a 
set of attributes (standard attributes are Object Identifier, Object Heading and 
Object Text). It’s possible to filter some attributes in views.  
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• Link Modules gather links information. Links module contains a set of Linksets 
which represent link information between two Formal Modules. 

 
Figure 62 DOORS project structure 

T-REK (Thales Requirement Engineering Kit) is an over-layer of DOORS which 
enables to distinguish different kinds of Formal Modules and Link Modules. T-REK 
offers a Relationship Manager to represent a project structure and relations between 
different formal modules: we call it a Datamodel. In a simplified Datamodel as shown 
by Figure 12 we distinguish: 

• Requirement Module, which represents Requirement Specification Document 
(it’s possible to distinguish User Requirement Specification and System 
Requirement Specification). The link between this kind of module corresponds 
to “satisfies” link. 

• Integration, Validation, Verification (IVV) Module, which gathers integration and 
tests campaign information (e.g. Test Result, Expected Test Method ...). IVV 
modules are linked with Requirement module by a “verifies” link. 

• Product Breakdown Structure (PBS) Module, which contains all subsystems or 
components (depending on project granularity) and all related information (e.g 
kind of component software, hardware ...). Components/Subsystems are 
represented by a DOORS object. Requirements modules are linked with PBS 
modules by a “is allocated to” link. 
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Figure 63 Simplified Datamodel in T-REK 

Risk are not represented in Standard T-REK Datamodel, this is why we plan to connect 
our DSML based on Risk analysis with DOORS T-REK. 

A.3. APPLICATION IN THALES REQUIREMENT WORKBENCH  
This deliverable cannot be the place for a detailed presentation of the conceptual 
model and syntax of DSML. We are providing below representative extracts. More 
details are provided in XXX. The core part of the conceptual model6 is represented in 
Figure 64.  

The system under analysis is considered to hold targets and essential elements. 
Targets are physical elements subject to risk. 

Key elements are usually more logical, functional elements: data and functions (or 
services, or capabilities depending on context) that are essential to the business stakes 
of the company, and therefore subject to security needs. Key elements depend on 
targets for their implementation.  

Requirements and Objectives are allocated to Essential Element and/or Target. To 
ensure risk traceability, Objectives and Requirements must cover Risk(s). Objective 
must be more general than Requirement, and to preserve traceability between those 
concepts, we consider a bidirectional association named “satisfies” between them. 

                                                        
6 For readability, it is represented in the form of a conceptual model rather than a formal conceptual model. 
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Figure 64 Conceptual model of Security Objectives an d Requirements in Security DSML 

In current Security DSML, we distinguish three kinds of static models7 as shown by 
Figure 65: 

• The Requirement Model describes the specialization of Objectives into several 
Requirements and links between those and the other elements of DSML (Risk, 
Context). 

• The Context Model describes System Architecture (Essential Elements and/or 
Target), related constraints and links between those and the other elements of 
DSML (Risk, Requirement).  

• The Risk Model describes the risk characterization into threats, damages and 
vulnerabilities and links between those and the other elements (Risk, Context). 

 

                                                        
7 The connectors between entities are not represented here for readability sake 
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Figure 65 Security DSML Static Model description 

Figure 66 shows how to realize the mapping between Thales Security DSML (or Other 
DSML for Need Analysis) and DOORS T-REK, to do this we must consider a 
Traceability relation  between Security Goal of Security DSML and DOORS 
Requirements.  

This relation enables to connect other kind of requirement (Safety, Maintainability, 
Cost, etc.) with Security Goals expressed in DSML. Requirements are stored in a 
common requirement Database (DOORS Database). This communication is realized 
via a Model Bus (Bidirectional interface XML to DXL8) for Traceability needs between 
DOORS and Security DSML. 

 

Figure 66 Mapping between DSML and DOORS 

                                                        
8 DXL (DOORS Extended Language) is the native language of DOORS 
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This connection enables to represent risk defined in DSML into a requirement attribute 
(Related Risk) and to connect Related Threat and Vulnerability into a component 
attribute. It’s so possible to represent risk into DOORS objects. 

Figure 67 presents the extended conceptual model including DOORS connections. 
Two kinds of entities are mapped with DOORS: Requirements and Target that are 
respectively represented by Requirement and Product Breakdown Structure object in 
DOORS. To ensure traceability between DSML and DOORS, we add a PUID (Product 
Unique IDentifier) attribute, PUID is the reference name of a DOORS object. 

 
Figure 67 Extended Conceptual model including DOORS c onnections 

Figure 68 depicts the properties view on Security Objective O6 (Identifiers should be 
chosen so that they do not compromise user‘s privacy). Figure 69 presents the 
requirement derived from security objective in DOORS. 

 
Figure 68 Close view on the Security Objectives 
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Figure 69 Derived Requirements expressed in DOORS  

The information of target can be consulted in the Properties View (Description, 
constraints applied on it), as can be seen in Figure 70. This properties view of Target is 
also defined in DOORS as shown by Figure 71. 

 

Figure 70 Properties of the Database Server in DSML 

 

Figure 71 Database Server description in DOORS 
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A.4. THE THALES CHANGE MODEL 
This Section introduces the industrial Change Model used by Thales. The concepts 
discussed here provided partial inspiration for the proposed generic change model in 
Section 7.1, as well as the change control model in 7.2. At certain points in the text we 
indicate the equivalent terminology in the Generic Change Model of WP3 (Section 7); a 
detailed table of corresponding concepts is located in Section 7.3.  

A.5. CHANGELINE CONCEPTUAL MODEL  
Changes are typically managed by a process, which is typically assisted by a change 
management system. When security-related changes are considered, the process 
must include the state of models with respect to validation and assessment of security 
goals. An orthogonal dimension is how to help human to manage the dashboard status 
of the security of the overall achievement, during which errors are allowed to be fixed 
and issues are allowed to be addressed. Resolution of such issues may lead to 
addressing the target of a security risk at the design level. In other words, the 
vulnerability of the specification can be associated with a particular risk factor in 
satisfying certain security goal. 

To represent traceability between changes and versioning of change, Thales has a 
further conceptual model: a Change Model is composed by several Change Lines. A 
Change Line is considered as set of Changes and Change Transitions to preserve 
links and grant consistency between successive changes which compose a Change 
Line. Change is caused by a Change Trigger  (e.g. discovery of a fault or a new 
threat); this concept corresponds to Change Event defined in Section 7. The ‘contents’ 
of the change is documented in a Change Request, that describes what and how 
should be changed; in the terminology of the SecureChange change model in Section 
7, this is equivalent to the Opaque Change Step of a Requested Change as defined by 
a Human Actuator. It’s possible to activate a Change Trigger by a threshold defined in 
an Evolution Function (Change Sensor in the terminology of Section 7) which 
monitors the static model of the system. Evolution functions enable to represent 
Continuous Perspective of change. Change Lines enable to represent both the 
maintenance perspective and the before-after perspective.  
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Figure 72 DSML Change Model conceptual model 

A.6. CHANGEREQUEST CONCEPTUAL MODEL  
As shown by Figure 72, a Change Request contains a PUID to identify it and a status 
representing the state of Change request. After the activation of Change Request by 
the Change Trigger, Change Request status is first defined in CCB (Configuration 
Control Board). The configuration (or change) control board (CCB) is a meeting 
between all actors of a development team (client, manager, quality, design, integration, 
…) to define the change request status (e.g. accepted, refused or postponed in the 
next version of system). The detailed behavior of Requirement Change Request is 
described in next section. 

To instantiate a Change Request inside different models, we have specialized it in 
three kinds: 

• A Requirement Change Request modifies the Requirement Model 
(Requirement, Objectives). It’s possible to map this kind of Change Request 
with DOORS Change Request. 

• A Context Change Request modifies the Context Model (e.g. system 
architecture). 

• A Risk Change Request modifies the Risk Model (Risk, Threat, Damage, 
Vulnerability). 

These three kinds of Change Request are dependants; a Requirement Change 
Request could impact on Risk Change Request and Context Change Request and vice 
versa. This is why we consider a traceability relation between those Change Requests. 
This relation is described by an association called “impacts_on” (see Figure 73). 
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Figure 73 DSML Change Request Conceptual model 

A.7. BEHAVIOR OF CHANGE REQUEST 
For the sake of readability, the generic Change Request Behavior is described by UML 
Statechart Diagram (see Figure 74a). We present on the one hand the generic 
behavior of Change Request including CCB status relations. On the second hand we 
describe the specific behavior of Requirement Change Request. 

A Change Request (CR) starts after Change Trigger activation (e.g. discover a fault, a 
new requirement, etc.). Redactor of Change Request must define the change and trace 
it with the impacted elements. Change Request is as default in Pending State.  

A CCB must be planned; it monitors the Change Request Status which could be in the 
following states: 

• Refused, CR is not relevant; it is not integrated in system. Change Request is 
ended in this state. In SecureChange terminology (Section 7), the Planned 
model version becomes Abandoned. 

• Postponed, CR is relevant but it’s not possible to integrate it in the current 
version of the system. This CR is planned for the next version. CR returns in 
Pending State during this system version. In SecureChange terminology, this is 
not distinguished from the case where the CR is refused and later an identical 
CR is accepted,since the focus is on managing the changes of the model and 
not the CR process. 

• Accepted, CR is integrated in current version of system. In SecureChange 
terminology (Section 7), the Planned model becomes Realized. 

If CR is accepted, it will be In_process macro state. This macro state is specialized for 
several DSML Models (Risk, Requirement or Context). 

CR is finish if and only if it’s closed in CCB with client agreement. 
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Figure 74 Change Request Status Behavior (a) generi c (b) requirements-specific 

Specific Requirement Change Request (RCR) Behavior starts after Accepted state 
in generic behavior. As shown by Figure 74b, Requirement Change Request Status is 
represented by the sequence of following states: 

• To_be_Managed, redactor of Requirement Change Request must take into 
account impact of this change request with the other elements (Risk and 
Context) and change them if necessary with new CR(s). 

• In_progress, redactor must define changed requirement, designer must 
models them, and developer must implement them. 

• To_be_verified, integrator must take into account these changes in test 
campaign (and change test scenario if necessary). 

• Resolved, RCR Status will reach this state if and only if changed requirement 
are verified in test campaign. 

 

 


